Heteroatom-Facilitated Lithiations

Heinz W. Gschwend, Ciba-Geigy Corporation, Summit, New Jersey Herman R. Rodriguez, Ciba-Geigy Corporation, Summit, New Jersey

1. Introduction

Some 25 years have elapsed since the topic of metalation reactions was reviewed by Gilman and Morton. (1) The intervening years have been notable for intensive explorations in this area, in part because many organolithium reagents are now commercially available. Specifically, research efforts have been characterized by the discovery of new functional groups that promote metalation, elaboration of novel heterocyclic and olefinic substrates as metalatable species, recognition of new types of lithiating agents, and the continuation of efforts to define accurately the mechanism of metalation. Accordingly, heteroatom-facilitated lithiation has become recognized as an increasingly important tool, not only in the elaboration of carbocyclic aromatic and heteroaromatic systems, but also in synthetic aliphatic chemistry. A few recent reviews have covered the topic in a more limited (2, 3) or less specific sense. (4-6) It is the purpose of this chapter to survey and classify the vast accumulation of heteroatom-facilitated lithiations recorded since the first coverage in *Organic Reactions*. (1)

As outlined by Gilman and Morton, the terms "metalation" in general and "lithiation" in particular denote any replacement of a hydrogen atom by metal or lithium. In this review, however, lithiation is defined as the exchange of a hydrogen atom attached to an sp^2 -hybridized carbon atom by lithium to form a covalent lithium-carbon bond (Eq. 1). More specifically, discussion is limited to those metalations that, through the influence of a heteroatom, are characterized by rate enhancement and regioselectivity. In fact, lithiation reactions of this type are noted for an extraordinarily high degree of regioselectivity, metalation generally occurring on the sp^2 -carbon atom closest to the heteroatom. Based on the relative position of the heteroatom, such lithiations are conveniently classified into two principal categories: alpha and beta (*ortho*) lithiations.

$$C \to H \xrightarrow{RLi} C \to Li$$
 (1)

In *alpha lithiations* the metalating agent deprotonates the sp^2 -carbon atom *alpha* to the heteroatom to form a carbon—lithium bond (Eqs. 2 and 3). This

*sp*²-carbon atom may be part of an olefinic or heteroaromatic π system (Eqs. 2 and 3, X = heteroatom, Y = heteroatom or C_{sp²}).

In *beta lithiations* the metalating agent is directed to deprotonate the sp^2 -carbon atom *beta* to the heteroatom-containing substituent (Eqs. 4 and 5, X = heteroatom and n = 0 - 2). The sp^2 -carbon atom can be part of an aromatic (Eq. 4) or an olefinic (Eq. 5) π system. It should be noted that the designation "*ortho* metalation" is used specifically for the beta metalation of carbocyclic aromatic systems.

This chapter surveys all systems in which alpha and beta lithiations have been observed, with the exception of ferrocenes. (2, 3, 7)

2. Mechanism

Although numerous studies on the mechanism of heteroatom-facilitated lithiations have been undertaken, particularly those of alkyl aryl ethers, most of the current views are based more on speculation and hypothesis than on data. A major reason for this situation lies in the properties and/or characteristics of the traditional lithiating agents, *i.e.*, lithium alkyls and lithium aryls. These include high but variable reactivity and complexity (depending on solvent, concentration, and temperature) and instability. (6, 8) In recent years an additional dimension has been added through the utilization of new types of lithiating agents, particularly *n*-butyllithium/amine complexes and lithium dialkylamides.

An understanding of the mechanism of metalation can be facilitated by the recognition of the existence of *two* distinct types of metalating agents. Accordingly, before the actual mechanism is discussed, attention should be brought to the individual characteristics of these lithiating agents. The first type, lithium alkyls and lithium aryls, are oligomers of varying complexity in solution (see p. 8). In addition they are electron-deficient species, (9, 10) and therefore Lewis acids which can coordinate with Lewis bases such as ethers and amines (6, 8) with consequent depolymerization to varying extents. It is important to note that kinetically these reagents become more basic as the aggregate size diminishes; therefore, tetrahydrofuran is the solvent of choice for generating reactive species (see accompanying tabulation). The pK_a of *n*-butane is 45–50, (11-13) with that of other alkanes typically falling in the range 42–60. (6, 11-13)

Lithiating Agent	Solvent	State of Aggregation	Reference
<i>n</i> -BuLi	hydrocarbon	hexameric	14
	ether	tetrameric	14
	tetrahydrofuran	dimeric (solvated)	15
<i>n</i> -BuLi/TMEDA [*]	hydrocarbon	monomeric	16
<i>t</i> -BuLi	hydrocarbon	tetrameric	17, 9
	tetrahydrofuran	dimeric (solvated)	15
C ₆ H ₅ Li	ether	dimeric	4, 18
	tetrahydrofuran	dimeric	19, 20

The distinguishing characteristic of the second type of lithiating agent is its negligible extent of Lewis-acid character relative to uncomplexed lithium alkyls and lithium aryls. Included in this category are *n*-butyllithium/amine complexes and lithium dialkylamides, the former being monomeric in hydrocarbon solution, whereas some evidence exists that the latter are dimeric aggregates in solution. (21) Another distinctive property of the lithium dialkylamides is their decreased thermodynamic basicity relative to the lithium alkyls, the *pK*a's of secondary amines being approximately 30. (5)

Although an apparent contradiction in terms, it has often been noted (22-25) that lithium dialkylamides are generally more effective metalating agents than the thermodynamically more basic lithium alkyls and lithium aryls particularly vis-à-vis substrates with pK_a values < 30. The phenomenon of an increased kinetic basicity of heteroatom bases in general and lithium amides in particular may be rationalized by the availability of a free pair of electrons, which permits the formation of a four-membered transition state (Eq. 6). The intermediacy of a free carbanion is thus avoided. (22)

$$\begin{array}{c} & & \\ & &$$

It should be recognized that the deprotonation of an unsaturated carbon acid, such as benzene or ethylene (pK_a 36.5–37.0), (11-13) is thermodynamically feasible with lithium alkyls, as the $\triangle pK_a$ is greater than 5. Yet these metalations are exceedingly slow even in ethereal solvents; *e.g.*, benzene shows negligible lithiation with *n*-butyllithium in hexane after 3 hours at room temperature. (1, 26) Therefore, one phenomenon that must be explained by any mechanism concerning heteroatom-facilitated lithiation is the great rate enhancement; *e.g.*, anisole metalates to the extent of 30% with *n*-butyllithium in ether in 2 hours. (27) In addition the high degree of regioselectivity must be accounted for.

An example of rate enhancement in an intermolecular sense is the lithiation of benzene with *n*-butyllithium coordinated with TMEDA (3 hours/25°) *vs.* that of *n*-butyllithium alone (*vide supra*). (16, 26) The function of the TMEDA is the depolymerization of the normally hexameric *n*-butyllithium to the kinetically more reactive monomer via coordination of the nitrogen atoms of the bidentate ligand with the lithium atom. Analogously, as a working hypothesis it has been

assumed for many years that the initial step in heteroatom-facilitated lithiation reactions is the coordination of the electron-deficient metalating agent with the nonbonding electrons in the substrate heteroatom (with attendant depolymerization). (28) This coordination is then followed by a protophilic attack of the carbanionic portion of the lithiating agent on the adjacent hydrogen atom, leading to the metalated product. (29) Although this simplistic view of the mechanism is quite useful in explaining and predicting numerous experimental observations, other factors, particularly the inductive effects of heteroatoms or substituents, can play important roles in these reactions. It is the contention of these authors that the hydrocarbon acidity can become the sole determinant and that a new mechanism is indicated. Accordingly, it is postulated that there are, in fact, *two* limiting mechanisms:

- 1. "coordination only" mechanism
- 2. "acid-base" mechanism

Between these extremes there is a continuous spectrum of cases in which both effects simultaneously contribute in varying degrees to the observed phenomena. A full explication of these concepts is best presented through illustration.

2.1. Beta (Ortho) Lithiations

The best example of a "coordination only" mechanism is the *ortho* lithiation of N,N-dialkylbenzylamines. (30) Despite the fact that the benzylic methylene group (neglecting any effect of the basic nitrogen) has an inductive effect on the *ortho* position which actually decreases its acidity, lithiation occurs exclusively at position 2 as well as far more rapidly relative to benzene. (31, 32) Thus it has been assumed that the initial step in this reaction is the coordination of the metalating agent with the lone pair of the basic nitrogen atom. The nearest available proton in the *ortho* position then suffers a protophilic attack, leading to the internally chelated and isolable organolithium species (Eq. 7). (2, 3, 9) One may consider this an intramolecular version of the lithiation of benzene with the *n*-butyllithium/TMEDA complex alluded to earlier. This view is further supported by the observation that even with excess metalating agent only a monolithio species is formed, since the chelate no longer possesses Lewis-base character. (30, 33)

Most mechanistic studies of the *ortho* lithiation have been carried out with alkyl aryl ethers, where a combination of the two mechanistic determinants, *i.e.*, coordinative and inductive effects, is operative. Nmr data have shown that lithiation in hydrocarbon solvents results in the initial disruption of the oligomeric alkyllithium to yield a reactive complex with the substrate. (34) The stoichiometry of this complex depends on the structure of the ether. For anisole the whole process is generally and simplistically pictured in Eq. 8. (35) In the intermediate coordinated species the carbon - lithium bond of the metalating agent and the carbon - hydrogen bond of the substrate are polarized to a greater extent, thus rendering the proton to be removed more acidic by induction. The second step, namely the actual deprotonation (protophilic attack), is rate determining. Hydrogen–deuterium exchange studies clearly show the expected isotope effect ($k_{\rm H}/k_{\rm D}$) to be in the range 6–8. (36)

A pivotal example is the lithiation of *p*-methoxy-N,N-dimethylbenzylamine. (19) The acidity of the hydrogen atom at position 3 should be distinctly higher than at position 2 because of the inductive effect of the methoxyl group. (13, 31, 32) Nevertheless, metalation with a lithiating agent of high Lewis-acid character (*n*-butyllithium) occurs exclusively at position 2 as a result of the higher coordinative capacity of the basic nitrogen ("coordination only" mechanism). Alternatively, with the monomeric *n*-butyllithium/TMEDA complex whose Lewis-acid character has been considerably diminished via coordination (*vide supra*), the most *acidic* proton at position 3 is removed selectively ("acid–base" mechanism). (19)

2.2. Alpha Lithiations

For alpha metalations of π -excessive heterocycles, particularly those of thiophene, the precoordination of the metalating agent with the heteroatom has also been invoked as the initial step of the mechanism. (37, 38) However, it has been demonstrated that thiophene, like benzene, cannot be lithiated readily in hexane solution by *n*-butyllithium (23, 39, 40) but that lithiation does occur rapidly in ethereal solvents (see p. 35). This evidence suggests that the sulfur atom in thiophene does not in fact act as a Lewis base, as does the

oxygen atom in anisole, and therefore is unable to decrease the state of aggregation of the hexameric *n*-butyllithium (see p. 8) with consequent increase in its activity. Therefore the rate enhancement and regioselectivity of most alpha metalations can be attributed merely to the inherently higher acidity of the substrates. Consequently, alpha metalations can generally be considered to proceed by the "acid–base" mechanism.

There are few accurate pK_a measurements available for these substrates (*e.g.*, trichloroethylene, $pK_a = 18$, (12) thiophene (alpha position), $pK_a \gg 30$ (23)); however, ample evidence from base-catalyzed hydrogen exchange rates

indicates that the kinetic acidity of the alpha position $(C_{sp^2} - H)$ is dramatically

enhanced by the adjacent electronegative atom relative to ethylene or benzene (Eq. 9). This observation is corroborated by the fact that 2-thienyllithium can be generated to the extent of 50% with lithium diisopropylamide, a considerably weaker base than *n*-butyllithium. (23) It has similarly been established that the hydrogen exchange rate in the alpha position is greater by a factor of 2.5×10^5 than that in the beta position. (41, 42) Again, this observation explains the regioselectivity of the metalation without invoking precoordination.

$$\begin{array}{c|c} & & \\ &$$

Another example supportive of the "acid–base" mechanism hypothesis is the lithiation of pyrazoles. If precoordination were indeed an important factor, one would assume that N-substituted pyrazoles would lead to lithiation in the 3 position via coordination with the unshared pair of electrons of the nitrogen in the 2 position. Metalation, however, occurs exclusively at the more acidic 5 position (see p. 23).

In synopsis, it can be stated that lithiating agents with little or no Lewis-acid character generally lead to thermodynamic products derived from deprotonation at the most acidic position. In contrast, coordinatively unsaturated metalating agents, such as *n*-butyllithium in hydrocarbons or ethers, produce kinetic products derived from deprotonation at the atom closest to the most effective ligand.

3. Scope and Limitations

3.1. Nature and Reactivity of the Lithiated Species

Few reports describe the physical properties or the relative reactivity of alphaor beta-lithiated species. The most complete information is available on *o*-lithio-N,N-dimethylbenzylamine, which can actually be isolated as a pure solid. (9) In this case there is good evidence for strong intra- and/or intermolecular lithium–nitrogen interactions (9, 43) and, that by virtue of the latter, a solvent- and concentration-dependent aggregation occurs. Because of this type of internal chelation and/or the acidifying inductive effect of electron-withdrawing directors, heteroatom-stabilized lithioorganics appear to be both somewhat less reactive (23, 24, 44) and weaker Lewis acids. The decrease in these parameters is dependent on the nature and strength of the internal chelation and inductive effects. It is this very decrease in Lewis–acid character that permits the isolation of such lithiated reagents, notably *o*-lithio-N,N,-dimethylbenzylamine, free of ethereal solvents. (9)

3.2. Influence of Other Substituents

In carbocyclic aromatic, heteroaromatic, and olefinic systems, the presence or absence of substituents other than the one arbitrarily considered to be the directing functionality is of considerable importance, since several factors in the lithiation of a particular substrate will be affected. These can be classified into the following categories: effects on rates, regioselectivity, and compatibility.

3.2.1.1. Effects on Rates

Substituents clearly affect the rates of lithiation in a particular π system. These effects are largely inductive in nature and are reflected in an increased or decreased kinetic acidity of a particular proton. Although various substrates readily lend themselves to kinetic studies under carefully controlled conditions, the rate-enhancing effects of substituents have been quantitatively studied only for bromobenzene derivatives. (32) These studies on the kinetics of aryne formation from substituted bromobenzenes, in which the *ortho* lithiation is considered to be the rate-determining step, probably represent the best basis for the assessment of these substituent effects. By applying the data to *ortho* lithiations in general (X = any *ortho*-directing group), the effect of the substituent R on the rate of metalation should decrease as indicated in Eqs. 10-12.

One interesting aspect of these data is the unusual position occupied by the methoxyl and dimethylamino groups in 1,3-disubstituted benzenes. Although both groups exhibit a smaller acidifying effect on an *ortho* position than does chlorine or the trifluoromethyl group, (31) their rate-enhancing effect, particularly that of the methoxyl group, is greater than that shown by the trifluoromethyl group. This phenomenon is ascribed to the enhanced coordinative involvement of these two moieties, (32) as discussed in the mechanistic section. Accordingly, in 1,3-disubstituted benzenes the rate enhancement of R is determined not only by its inductive effect but also by its coordinative potential.

These relative directing effects are corroborated in several other systems, as judged by the rough estimates of the degree of *ortho* lithiation determined by deuteration. For example, from the studies of N,N-dimethylbenzylamines, (24,

45) N-methylbenzamides, (23, 24) and 2-aryloxazolines, (46) it can be stated that a chlorine in a *para* position has a rate-enhancing effect, whereas a methoxyl group has a small, if any, rate-decreasing effect relative to hydrogen. These effects run parallel to the relative rate factors *f* of the potassium amide–catalyzed hydrogen–deuterium exchange in liquid ammonia for substituted benzenes. (31, 47)

In alpha lithiations the situation is rather similar. Any substituent in a position beta to the facilitating heteroatom increases the rate of metalation if it exerts an inductive effect that increases the acidity of the alpha proton. The reverse inductive effect, of course, has the opposite effect. This is true for both olefins and π -excessive, five-membered heterocycles. Specifically, this rate-enhancing or -decreasing effect is shown, for example, in the thiophene series: 3-bromothiophene > thiophene > 3-methylthiophene. (48)

3.2.1.2. Regioselectivity

Since a large number of functional groups and atoms possess an inherent directing effect on the metalation of π -systems, their presence in a substrate, together with the dominant directing group, can have a pronounced effect on the regioselectivity of the metalation. For benzenoid systems, when a substituent (Y) is present in either a 1,2 or 1,4 relationship to the dominant *ortho*-directing group or atom (X), the general rule is that the higher degree of lithiation occurs *ortho* to the more powerful directing group. The strength of the director, however, is interdependent on the nature of the lithiating agent utilized (see p. 49 and pp. 77–80).

When X and Y are in a 1,3 relationship, even if the directing effect of Y is weak, lithiation occurs predominantly or exclusively in the position *ortho* to both the beta-directing group X and the substituent Y. The degree of regioselectivity depends on the relative inductive and coordinative capacities of Y. Known exceptions to this phenomenon are those in which $X = Y = CF_3$ (49, 50) and $X = Y = CONHC_4H_9$. (24, 51) Analogously, in π -excessive five-membered heterocycles, the general effect of Y in the 3 position (studied most extensively in the thiophene series) (52) is to provide selective or specific lithiation in the 2 position.

Whereas most substituents exert some beta-directing effect, some groups cannot coordinate, and these influence the regioselectivity in a different sense. For Y = alkyl, for instance, metalation occurs preferably *not* in the position *ortho* to both substituents in 1,3-disubstituted benzenoid systems but, rather *para* to Y, whereas in π -excessive, five-membered heterocycles position 5 is preferred.

3.2.1.3. Compatibility

As a generalization, any substituent that does not react with the lithiating agent used to effect a metalation is considered compatible. Most of the knowledge concerning such compatibility is based on data available for benzene and thiophene systems. It should be emphasized that for any particular example the compatibility of a substituent with the lithiation conditions depends both on the facility of metalation of the substrate and on the lithiating agent itself. Whether or not a given substituent is compatible, therefore, is often a question of competing reactions, *i.e.*, nucleophilic attack of the lithiating agent on the substituent vs. the actual metalation. Accordingly, it should be noted that substituents often considered incompatible in the metalation of carbocyclic aromatic systems are quite compatible in the more facile alpha lithiations. In addition the use of the non-nucleophilic lithium dialkylamides renders compatibility to certain electrophilic substrates in isolated instances. The following summary lists those functional groups that are generally considered incompatible, except where noted. These substituents conveniently fall into three categories: electrophiles, acidic groups, and halogens.

3.2.1.3.1. Electrophiles

Included in this category are nitro groups, aldehydes, ketones, acids, esters, nitriles, and, in most instances, primary and tertiary amides. (53, 54) Low-temperature lithiations of *m*-chlorobenzonitrile, (24) hindered tertiary benzamides, (55, 56) and β -aminoacrylic acid derivatives, 57a–c however, are known.

3.2.1.3.2. Acidic Groups

This category encompasses alkylmercapto, (1, 58, 59) alkyl sulfinyl, alkylsulfonyl, (60) and *ortho* alkyl groups. The acidic character of these groups usually precludes their presence in substrates. However, the alkylmercapto groups are perfectly acceptable in heterocyclic or olefinic systems. Alkyl substituents are generally quite compatible under the usual lithiating conditions. If, however, such alkyl groups, particularly methyl, are located in an *ortho* position with respect to the directing group, deprotonation of the alkyl group can be either a side reaction, as for *o*-alkoxytoluenes (61, 62) or *o*-toluidines, (63) or the exclusive pathway, as for *o*-toluamides, (64, 65) *o*-tolylsulfonamides, (66) *o*-tolyloxazolines, (46) and *o*-methylbenzylamines (67) (Eq. 13). This type of reaction is synthetically rather useful but, since it lies beyond the defined scope of this chapter, it is not discussed in detail.

$$(13)$$

3.2.1.3.3. Halogens

Whereas metal-halogen exchange of chlorine and fluorine usually is not a problem, aryne formation can become the predominant reaction if the lithium enters *ortho* or beta with respect to the halogen. The use of lithium amides generally increases the rate of aryne formation. (25) This eliminative pathway can be suppressed at low temperatures. In bromine- or iodine-containing substrates metal-halogen exchange is usually the preferred reaction. In the readily lithiatable heterocyclic systems, however, even in the presence of bromine and, in a few cases, iodine metalation proceeds normally, and little if any halogen-metal exchange is observed. (48, 68) A few exceptions are known in which metalation is preferred in bromo-substituted benzenoid systems. (69)

3.3. Alpha Lithiation

Alpha metalations are deprotonations of olefinic, aromatic, or other π systems at the *sp*²-hybridized carbon that is alpha to a heteroatom X, as illustrated by Eq. 14. Alpha lithiations occur primarily in families of

$$Y = C \begin{pmatrix} H \\ X \end{pmatrix} \xrightarrow{RLi} Y = C \begin{pmatrix} Li \\ X \end{pmatrix} \xrightarrow{Y = C, O, S, -N} X = OR, SR, NRR', halogen$$
(14)

five-membered heterocycles that have one or more heteroatoms. More recently, the metalation of simple heterosubstituted olefins has been developed into a synthetically useful tool (*vide infra*). One common feature of alpha lithiations is the rapidity with which they proceed in comparison to beta lithiations.

3.3.1. Alpha Activators and Their Relative Activating Ability

The inductive effect of an alpha activator greatly increases the acidity of the adjacent carbon - hydrogen bond, thus making alpha lithiations very facile. The following heteroatoms are known to lead to alpha metalations: nitrogen, oxygen, sulfur, selenium, tellurium, fluorine, chlorine, and bromine. In the series of five-membered heterocycles-thiophene, furan, and N-alkylpyrroles-competitive metalation studies have revealed that under

thermodynamic conditions the rate of metalation is greatest with sulfur, resulting in the following rank order: sulfur > oxygen > N-alkyl. (70) The fact that sulfur is the best alpha activator is explained by the $(d - \sigma)$ overlap, which apparently outweighs the inductive effect of the more electronegative oxygen and nitrogen atoms. (42, 70) It appears that this $(d - \sigma)$ overlap is a major factor in the enhancement of the thermodynamic stability of such anions adjacent to sulfur. (71, 72) Conversely, the more rapid lithiation of furan under kinetic conditions points to the superior ability of oxygen to act as a ligand. (40) Accordingly, under kinetic conditions the order becomes oxygen > sulfur > N-alkyl.

By inference from the available experimental facts the following additional conclusions can be drawn:

- Alpha metalations occur more readily on a carbon bearing two heteroatoms (Eq. 14, X and Y = heteroatom).
- 2. The rate of alpha metalation increases with an increasing number of heteroatoms present in five-membered heterocycles. (71, 73)
- Alpha metalations of olefins occur most readily, usually at temperatures below –70°. The relative activating potency of the heteroatom under thermodynamic conditions appears to be halogen > sulfur > oxygen > nitrogen.

3.3.2. Nitrogen as an Alpha-Activating Atom

3.3.2.1. Enamines

The alpha lithiation of enamines has received only scant attention, being limited to special cases. N,N-Diethyl-3-(1-pyrrolidinyl)acrylamide, for instance, can be metalated at -115° to produce the corresponding α -lithio species. (57a) The latter reacts with methyl iodide, for instance, to give the analogous crotonamide in high yield. The facility of this metalation is probably a result of both the alpha-activating ability of the pyrrolidine group and the acidifying and directing effects of the beta-directing carboxamide function. It should be noted that at higher temperatures 1,4 addition of the lithiating agent prevails. (57a)

Alpha lithiation of ethyl 3-(1-pyrrolidinyl)acrylate proceeds equally well at low temperatures. (57b) However, a different picture emerges on the

metalation of 3-(1-pyrrolidinyl)acrylonitrile. Reaction with lithium diisopropylamide at temperatures lower than –105° results in the kinetically controlled deprotonation of the expected position, *i.e.*, alpha to the enamine group, to give the lithio species 1. When warmed above –100°, however, this intermediate (1) slowly rearranges to the thermodynamically more stable beta-lithiated isomer 2a, which is mesomeric with the imine anion 2b. Both lithiated species 1 and 2a,b can be reacted selectively with electrophiles to produce, after treatment with methyl iodide, *e.g.*, 3-(1-pyrrolidinyl)crotonitrile and 2-methyl-3-(1-pyrrolidinyl)-acrylonitrile, respectively. (57c)

Deuterium incorporation has shown that the dihydropyridine **3** undergoes alpha metalation. (74)

Functionally, vinyl isocyanides may be considered derivatives of enamines. The strong acidifying character of the isocyanide group on sp^3 carbons is well known. (75) Apparently, this electron-withdrawing effect is also sufficiently operative on sp^2 carbons to permit alpha lithiation of certain types of vinyl isocyanides. Styryl isocyanide, for instance, is readily deprotonated at low temperatures to give α -lithio styryl isocyanide. (76) This reacts readily with various electrophiles; reaction with carbon dioxide, for example, gives a high yield of lithio α -isocyanocinnamate. With aldehydes and ketones, *e.g.*, acetone, the initial adduct is in equilibrium with the lithiated oxazoline (see p. 31), which in turn can further react to give a diadduct. The ratio of mono- and diadduct appears to depend on the character of the carbonyl reactant. (76) In view of the limited thermal stability of vinyl isocyanides, these reactions are clearly only of theoretical interest.

3.3.2.3. Formamides and Thioformamides

Deprotonation of dialkylformamides is essentially instantaneous even at -100° , (77) and there seem to be very few limitations to the nature of the N-alkyl substituent (Eq. 15). Alpha-lithiated formamides represent a novel type of acyl anion equivalent or, more specifically, a highly reactive one-carbon synthon with the oxidation state of cyanide. The synthetic potential of lithio dialkylformamides is documented by their excellent reactivity with numerous electrophiles. (77, 78)

$$\begin{array}{cccc} \mathbf{X} & \mathbf{X} \\ \mathbf{H}\mathbf{C}\mathbf{N}\mathbf{R}_{1}\mathbf{R}_{2} & \underline{\mathbf{L}\mathbf{D}\mathbf{A}} & \mathbf{L}\mathbf{i}\mathbf{C}\mathbf{N}\mathbf{R}_{1}\mathbf{R}_{2} \\ \mathbf{X}=\mathbf{0},\mathbf{S} \end{array} \tag{15}$$

The deprotonation of dimethylformamide can be carried out with lithium diisopropylamide at -78° ; subsequent reaction with pivalaldehyde, for example, gives a good yield of the hydroxyamide **4**. (78) A variant of this technique using N-methoxymethyl substituents gives access to adducts such as **5** and **6**, which upon deprotection give either secondary or primary amides. (79) An interesting facet of this reaction is that the lithiated species need not be preformed, for a 1:1 mixture of dimethylformamide and a substrate, *e.g.*, cyclohexanone, can be treated with lithium diisopropylamide at -78° to form the corresponding

hydroxyamide in 62% yield. (78) This observation certainly attests to the kinetic acidity of the formamide proton relative to those of cyclohexanone.

 $\begin{array}{rcl} HCON(CH_3)_2 & \xrightarrow{1. \text{ LDA}} & t\text{-}C_4H_9CH(OH)CON(CH_3)_2 \\ & & 4 & (76\%) \end{array}$ $\begin{array}{rcl} HCONR_1R_2 & \xrightarrow{1. \text{ LDA}} & (C_6H_5)_2C(OH)CONR_1R_2 \\ & & 5 & R_1 = CH_3, R_2 = CH_2OCH_3 & (85\%) \\ & & 6 & R_1 = R_2 = CH_2OCH_3 & (88\%) \end{array}$

The reported lithiation of N,N-dimethylthioformamide (77, 80) is carried out at -100° to form the desired anion within 3 minutes. Reaction of the anion with methyl benzoate gives an 85% yield of the corresponding α -ketothioamide. (77)

3.3.2.4. Pyrroles and Indoles

Compared with the oxygen and sulfur isosteres, furan and thiophene, pyrroles are lithiated only poorly in their alpha position. In fact, pyrrole itself undergoes only deprotonation of the nitrogen atom, even with excess reagent. (81) N-Alkyl- and N-arylpyrroles, however, do undergo the expected alpha lithiation, baut higher temperatures or longer reaction times are needed. Markedly increased rates of metalation can be achieved, however, by the use of reactive alkyllithium/TMEDA complexes. (40, 68, 82) This is illustrated by the transformation of N-methylpyrrole into N-methylpyrrole-2-carboxylic acid in good yield, (68) whereas the same reaction with *n*-butyllithium alone provides only a 42% yield of the acid. (81) With excess *n*-butyllithium and TMEDA products derived from 2,5-dilithio-N-methylpyrrole can be isolated, whereas in the absence of TMEDA the 2,4-dilithio species predominates. (40) N-Arylpyrroles can also be considered as tertiary anilines and, in fact, products of both alpha *and ortho* lithiation are isolated, as illustrated by the formation of the tricyclic ketone **7**. (81)

The metalation of indoles follows a similar pattern. N-Unsubstituted indoles are transformed into their lithium salts only, whereas N-alkylindoles are metalated in their alpha positions. (83) The rate of lithiation

is moderate; however, as for the metalation of pyrroles, the rate can be enhanced by using tetrahydrofuran as solvent. (84) The modest reactivity of indoles, particularly in comparison with benzofuran, is documented by the results observed in the lithiation of 5-methoxy-1-methylindole. After reaction with pyridine-2-carboxaldehyde, all three possible products (8–10) are formed, indicating that the *ortho*-directing effect of the methoxyl group is as strong as the alpha-activating effect of the indole nitrogen. (84)

The alpha lithiation of indoles can be facilitated by using methoxymethyl (85) or arylsulfonyl (84) protecting groups, *i.e.*, functionalities that have a beta-directing influence of their own. The cumulative directing effect of both the indole nitrogen and the protecting group is now sufficient, for instance, to lead exclusively to alpha lithiation, with 5-methoxy-1-(phenylsulfonyl)indole producing the 2-substituted derivative **11** in very good yield. (84) The presence of the methoxymethyl group has a similar rate-enhancing effect, as illustrated by the high yields achieved in the preparation of the acid **12**. (85) A potential

advantage in the use of protected indoles lies, of course, in the possibility of removing the protecting group.

3.3.2.5. Pyrazoles

1-Substituted pyrazoles are metalated in the 5 position.
3-Methyl-1-propylpyrazole, for instance, is alpha lithiated rapidly and essentially quantitatively to produce the carbinol 13. (86) Although N-unsubstituted pyrazoles are reported to undergo metalation in the 5 position, the yields are poor. (87) The generation of a 1,2 dianion may be responsible for this phenomenon. Again, an alternative is to use an

appropriate protecting group. The tetrahydropyranyl ether **14** is metalated under mild conditions, allowing very good yields of the 5-substituted products, as documented by the isolation of the thioether **15**. (23)

Two interesting side reactions can be observed in the metalation of certain pyrazoles. The first is a relatively facile deprotonation of the

N-alkyl substituent, particularly when it is a methyl group. Lithiation of 1,3-dimethylpyrazole, for instance, results not only in the formation of the expected alpha-metalated heterocycle **16**, but also appreciable amounts of the species **17**. Subsequent reaction with benzaldehyde yields

the corresponding carbinols. (86) It appears that the two anions are interconvertible. It should therefore be possible to run such reactions under conditions permitting the trapping of only the kinetic deprotonation product. The second example pertains to 1-phenylpyrazoles, where, aside from the normal alpha lithiation, *ortho* metalation of the phenyl ring is observed because of chelation with the imine nitrogen, giving rise to two acids **18** and **19**. (88) This type of side reaction becomes predominant when organomagnesium halides are utilized as metalating agents. (89)

3.3.2.6. Imidazoles and Condensed Imidazoles

As with other π -excessive, five-membered heterocycles with two heteroatoms in a 1,3 arrangement, lithiation of 1-substituted imidazoles occurs between the nitrogen atoms when the position is available. If the 2 position is occupied by an alkyl group, deprotonation may occur either at the 5 position or on the alkyl

group, depending on its nature. Although 1,2-dimethylimidazole is reported to lithiate at position 5, (90) a more recent investigation clearly demonstrates that the products of such reactions are derived exclusively from deprotonation of the relatively acidic 2-methyl group, (91) as illustrated by the isolation of the carbinol **20**.

Alpha lithiation between the nitrogen atoms is extremely facile, occurring even in the presence of a bromine substituent otherwise liable to undergo halogen–metal exchange. This is illustrated by the preparation of the carbinol **21**. (92)

Lithiation of 1-substituted benzimidazoles proceeds analogously with great facility and leads to 2-lithiated species. 1-Methylbenzimidazole can thus be silylated in high yield to give **22**. (93)

Imidazo[1,2-*a*]pyridine, a condensed imidazole with a blocked 2 position, undergoes alpha metalation as expected to produce, after quenching with dimethylformamide, the aldehyde **23**. (94)

3.3.2.7. Triazoles and Tetrazoles

1,2,3-Triazoles (95) and 1,2,4-triazoles (96) are lithiated with extreme rapidity in their respective alpha positions. It should be noted, however, that 5-lithio-1,2,3-triazoles are only stable at low temperatures. Above –40° they display a tendency to undergo a cycloreversion with loss of nitrogen and formation of an N-substituted ketenimine anion. (97) Nevertheless, low-temperature lithiation of 1-phenyl-1,2,3-triazole followed by reaction with methyl iodide gives an excellent yield of the 5-methyl derivative **24**. (95) Under similar conditions, followed by quenching with benzophenone, 1-benzyl-3-phenyl-1,2,4-triazole gives an equally high yield of the alcohol **25**. (96)

Tetrazoles are probably among the most readily lithiatable heterocycles because they contain the maximum number of four electronegative ring atoms. (73) The acidity of the only available ring hydrogen must be appreciable. N-Methyltetrazole, for instance, can thus be converted to the thiol **26**. (98)

3.3.2.8. Pyridines, Condensed Pyridines, and Pyridine N-Oxides Alpha metalation of pyridines and condensed pyridines is not a practical reaction, largely because these compounds are susceptible to nucleophilic attack. However, what may appear to be a direct lithiation can be achieved through use of lithium diisopropylamide and hexamethylphosphoramide as a cosolvent. Under these conditions only dimeric products (2,2 -bipyridines) can be isolated. (99) Comparatively stable 2-lithiopyridines (or quinolines) are, nevertheless, readily available via halogen–metal exchange. (100)

Direct metalation of pyridine N-oxides with *n*-butyllithium is feasible, although the yields are generally modest to poor. This is accounted for by the fact that addition competes with alpha deprotonation. (101) Although the lithiation proceeds alpha to the nitrogen atom, one has to assume a good deal of *ortho*-directing effect on the part of the oxygen atom. Thus a comparison with the *ortho* lithiation of phenol¹ (an equally poor process) may be suggested. The reactivity of the 2-lithio derivatives is not high enough to permit reactions with epoxides. (102) However, it is not uncommon for products derived from 2-lithiopyridine N-oxides to be highly electrophilic and therefore subject to additions of unreacted metalated species to the remaining azomethine linkage. (101) The reaction thus has only a limited synthetic potential.

3.3.2.9. Pyrimidines

Unlike imidazoles, pyrimidines apparently are not metalated by alkyllithiums in the 2 position, *i.e.*, between the nitrogen atoms, because of the known propensity of the pyrimidine nucleus to suffer nucleophilic attack at one of the azomethine linkages by nucleophilic organometallic reagents. One report, however, describes a successful metalation in the 4 position of 5-methylpyrimidine by using the non-nucleophilic lithium diisopropylamide. On quenching with benzophenone a modest but nonetheless significant yield of the carbinol **27** is isolated. (99)

3.3.3. Oxygen as an Alpha-Activating Atom

3.3.3.1. Alkyl Vinyl Ethers and Allenic Ethers

The synthetic potential of alpha-metalated vinyl ethers is substantial because they represent acyl anion equivalents, a type of synthon that has only recently become available (see p. 90). Although numerous enol ethers have been metalated, (103) methyl vinyl ether has been explored most thoroughly. (104) It is readily lithiated by *t*-butyllithium in tetrahydrofuran at low temperatures, reacting with essentially any electrophile to give good to excellent yields of the primary products. These in turn may then be hydrolyzed to ketones and elaborated further. The conversion of methyl vinyl ether into the ketone **28** is but one example of this useful type of reaction. (104) α -Methoxyvinyllithium undergoes 1,2 addition exclusively on α , β -unsaturated systems, (104) but 1,4 addition can be effected by conversion to the corresponding copperlithium reagent. (105, 106)

An interesting and potentially useful variant of this reaction is the *in situ* preparation of an enol ether via tautomerization of a protected allylic alcohol. Thus the tetrahydropyranyl ether of allyl alcohol is isomerized to the enol ether **29**, which in turn is readily metalated to the lithio species **30**. Subsequent reaction with methyl iodide produces a very good yield of the enol ether **31**. (107) It is likely that the oxygen of the protecting group of **30** provides additional chelation and stability to such reagents.

Metalation of enol ether systems was first realized with alkoxyallenes. (108a) If the higher metalation temperature in the reaction between methoxyallene and

n-butyllithium is any indication, it would appear that the resulting anion **32** has a greater stability than simple lithiated vinyl ethers. The product yields are generally good (108a) to excellent, (23) as illustrated by the formation of the allenic ether **33**. (108a) The accessibility and facility of metalation of allenic ethers, combined with their high reactivity toward a broad spectrum of electrophiles, make species like **32** very valuable synthons indeed.

Interestingly, metalation of hindered allenic ethers, such as *t*-butoxyallene, with lithium dicyclohexylamide occurs predominantly at the gamma position (*ca*. 80%). (108b) Similarly, lithiation of alpha-substituted allenic ethers with *n*-butyllithium takes place at the gamma position. (108b)

Higher alkoxycumulenes are apparently metalated equally well. Treatment of 1-methoxy-4-methyl-1,2,3-pentatriene with *n*-butyllithium provides the lithiated derivative **34**, (109) which can also be prepared from 1,4-dimethoxy-4-methyl-2-pentyne via *in situ* elimination and metalation. (110, 111) It reacts with electrophiles such as cyclohexanone to give the expected products, *e.g.*, the alcohol **35**, in good yields.

3.3.3.2. Furans and Condensed Furans

The alpha metalation of furans can be compared with the lithiation of vinyl ethers, since furan is itself a cyclic divinyl ether. Accordingly, the reaction of furan with *n*-butyllithium, although considerably less facile, does proceed in high yield in refluxing ether, as shown by the isolation of the carbinol **36**. (112) Dilithiation of furan can be achieved efficiently with *n*-butyllithium/TMEDA in refluxing hexane, as indicated by the isolation (90%) of dimethyl furan-2,5-dicarboxylate. (40) With a substituent in the 2 position, metalation occurs equally well in the free 5 position. As is discussed in more detail in regard to the thiophene series, a 3 substituent with a beta-directing capacity permits a regioselective metalation in the 2 position. Furan-3-carboxaldehyde ethylene ketal, for instance, leads to the 2-lithio species **37**, which can be quenched with various electrophiles to produce, after hydrolysis, 2-substituted-3-carboxaldehydes (113) such as the boronic acid **38**. (114, 115)

Condensed furans such as benzofuran undergo alpha metalation in the 2 position rather than *ortho* lithiation in the 7 position, which, at least in principle, could be considered an alternate pathway. The fact that alpha metalation is achieved far more readily than *ortho* metalation at any of the three possible sites (4, 6, or 7) of 5-methoxybenzofuran is documented by the reaction with *n*-butyllithium, followed by ethylene oxide, to obtain only the 2-substituted ethanol **39**. (116) The result is additional evidence that alpha metalation proceeds more readily in furans than pyrroles, for the analogous 1-methyl-5-methoxyindole gives a mixture of products, (84) as indicated on p. 22.

3.3.3.3. Isoxazoles

In contrast to the isothiazoles (p. 39) the lithiation of isoxazoles does not lead to the expected products. Still, metalation does occur next to the more electronegative oxygen atom when the 3 position is occupied, as illustrated for 3,4-diphenylisoxazole, but the lifetime of the lithiated species is very short and it suffers fragmentation into benzonitrile and a deprotonated phenyl ketene which can be trapped with electrophiles. (117)

3.3.3.4. Oxazoles and Oxazolines

Oxazoles can be readily lithiated in the 2 position. Unlike their nitrogen analogs, the imidazoles, the ambireactive character of their lithiated species indicates that they are in equilibrium with the enolate of a β -ketoisonitrile. Lithiation of 4,5-diphenyloxazole, for instance, produces the carbinol 40 on reaction with benzaldehyde, whereas reaction with chlorotrimethylsilane leads exclusively to the O-silyl ether 41. (118)

2-Oxazolines can be metalated in a similar manner, leading to an equilibrium mixture of alpha-lithiated species and isonitrile. (119, 120) Lithiated 4,5-diphenyl-2-oxazoline, for example, is acylated on oxygen with acetic anhydride, whereas reaction with benzaldehyde produces the dihydro derivative of **40**. (120)

3.3.4. Sulfur as an Alpha-Activating Atom

3.3.4.1. Vinyl Sulfides and Allenic Thioethers

Vinyl sulfides undergo rapid alpha metalation with lithium alkyls under carefully controlled conditions, and thus provide yet another acyl anion equivalent. (121) However, a possible side reaction in these alpha lithiations is a Michael-type addition of the metalating agent to the olefinic bond, leading to a saturated carbanion stabilized by the $(sp^3 - d)$ overlap. (59, 122) The reaction is fairly general with respect to the nature of the substitution on sulfur; *i.e.*, both alkyl and aryl groups are permissible. Allyl or benzyl sulfides are excluded, however, because of their known propensity for deprotonation of the sp³-bound hydrogen, as is the case with allyl vinyl sulfide. (123) The metalation of phenyl vinyl sulfide can be effected readily with lithium diisopropylamide, (124, 125) as well as with *n*-butyllithium/TMEDA, (126) without incurring addition of the metalating agent (see pp. 98–99). The vinyl sulfide anions react readily with aldehydes, ketones, epoxides, and alkyl halides. For example, alkylation of lithiated ethyl vinyl sulfide with n-octyl bromide, followed by mercuric ion-catalyzed hydrolysis of the primary product gives 2-decanone in excellent yield. (121)

An interesting situation arises with 2-alkoxy-1-(alkylthio)ethylenes where alpha lithiation is, in principle, possible at either of the two sp^2 -carbon atoms. Paralleling the observations made in the rates of lithiation of thiophene and furan under thermodynamic conditions, metalation of 2-ethoxy-1-(pentylthio)ethylene proceeds exclusively at the position alpha to sulfur. (127) The reactivity of the resulting anion appears to be comparable to that of the simple α -alkylthiovinyllithium species, and reaction with various electrophiles is possible. As shown, reaction with ethylene oxide produces the alcohol 42 in good yield. (127) The ethoxy group quite likely provides an additional beta-directing or at least an acidifying effect. One aspect worthy of note in this reaction is the apparent absence of elimination of lithium alkoxide. Similarly, lithiated (Z)-1,2-bis(diethylthio)ethylene (128) is stable at low temperatures, whereas the correspondingly metalated 1,2-bis(phenylthio)ethylenes (Z or E) undergo elimination at higher temperatures. (129)

In contrast to the vinyl sulfides discussed thus far, the amine **43** is unique in that the beta-directing nitrogen ligand serves to depolymerize the metalating agent and to chelate the resulting alpha-lithiated species. Despite the stability of the anion at ice-bath temperature, it is still reactive enough to undergo addition to a variety of electrophiles, as illustrated by the reaction with dimethyl disulfide to produce the basic ketene-S-acetal **44**. (23)

The alpha lithiation of allenic thioethers is facile, but in contrast to the oxygen congeners (see p. 29), the reactivity of the metalated species is more complex because of an increased stability of the propargylic anions. Thus metalation of the allene 45 followed by reaction with formaldehyde leads to a mixture of the two alcohols 46 and 47. (130) This ambireactive character can be changed in favor of the products derived from alpha-lithiated allenic thioethers by using lithium amide and ammonia as the metalating system. 131a,b

3.3.4.2. Vinyl Sulfoxides

Alpha metalation of alkenyl aryl sulfoxides is particularly facile and occurs at very low temperatures with lithium diisopropylamide. One noteworthy feature observed in the lithiation of E/Z mixtures of such substrates is the preferential formation of E-products which must be accounted for by an isomerization of the intermediate anion. Thus lithiation of a 1:1 mixture of (E)- and (Z)-3-methoxypropenyl phenyl sulfoxide followed by alkylation with methyl iodide leads almost exclusively to the E-product. (132) The yield of products is even higher in alkenyl 2-pyridyl sulfoxides. It appears that the metalation of propenyl 2-pyridyl sulfoxide is greatly facilitated by the presence of the pyridine nitrogen, which serves as a ligand to stabilize the resulting species via a

five-membered chelate. The methylated product, 1-methylpropenyl 2-pyridyl sulfoxide, is isolated in almost quantitative yield. (132)

3.3.4.3. Thiophenes and Condensed Thiophenes

Thiophene is metalated very readily, and under appropriate conditions even 2,5-dilithiothiophene can be generated. (40) Competitive lithiations between furan and thiophene have revealed (4, 41, 133) that under thermodynamic conditions the product ratio is 96:4 in favor of thiophene, whereas under kinetic conditions furan is metalated faster (40) (see p. 18). The calculated relative activities for the two heterocycles indicate that the alpha position in thiophene is 500 times more reactive than that in furan. (41) In addition, the greater stability of 2-thienyllithium is explained by *d*-orbital participation.

The lithiation of thiophene and numerous substituted derivatives has been extensively studied and reviewed. (38, 40, 42, 134) From the wealth of data available the following generalizations can be made for the lithiation of thiophene derivatives:

- 1. Because of the great facility with which thiophene itself can be metalated in its alpha position, 2-substituted derivatives in general give exclusive metalation in the 5 position. Two exceptions are discussed (p. 77).
- 2. A 3-substituted thiophene whose 3 substituent has any beta-directing ability (either inductive or coordinative) gives rise to exclusive or predominant 2 lithiation.
- 3. 3-Substituted thiophenes whose substituent has *no* beta-directing capability, such as 3-alkyl or arylthiophenes, are lithiated in both the 2 and predominantly in the 5 positions, depending on the degree of steric hindrance.
- 4. 3,4-Disubstituted thiophenes are lithiated beta to the stronger directing group.
- 5. Metalation of 2,5-disubstituted thiophenes is governed by the relative effectiveness of the beta-directing substituents (see p. 43).

The most intriguing aspect of the alpha metalation of thiophenes is the sheer inability of almost any beta-directing group to compete with the alpha lithiation. Although the sulfonamide, sulfone, and dimethylaminomethyl groups are among the strongest beta directors, when present as 2 substituents in thiophenes, their effect is completely over-shadowed by a selective alpha lithiation in the 5 position, as illustrated by the exclusive formation of the products **48**, (135) **49**, (69) and **50**. (134) In the presence of excess *n*-butyllithium, however, 3,5-dilithio species can be generated. For example, the diacid **51** can be isolated after an exhaustive metalation of *t*-butyl 2-thienyl sulfone. (136) In fact, the only beta-directing functionality capable of competing with an alpha activator is the imine moiety inherent in pyridine nuclei (137, 138) and oxazolines. (139) These results are discussed in more detail in the competitive metalations section (p. 77).

The regioselectivity provided by a 3 substituent with beta-directing ability, however, weak it may be, is quite striking. With the exception of 3-(alkylseleno)thiophenes, (140) alpha metalation in the 2 position is the predominant or exclusive process. 3-Alkoxy substituents provide a very high degree of regioselectivity and, in contrast to the carbocyclic aromatic systems, even a bulky *t*-butoxy group gives access to a high yield of the 2-methylated product **52**. (141) The dimethylaminomethyl group gives regioselective metalation in the 2 position, as evidenced by the isolation of the aldehyde **53**. (43, 134) A methoxymethyl group in the 3 position has a similar effect. (43, 134, 142)

Such selective metalations are utilized in the preparation of condensed thiophenes, *e.g.*, the acid **54**. The reported overall yield in this multistep

transformation is impressive. (143) 3,3'-Thiodithiophene can be dilithiated in the 2 and 2' positions to give, after copper-catalyzed coupling, the trithienyl system **55**. (144)

3-Alkyl- or -arylthiophenes give varying amounts of 2- and predominantly 5-metalated products, depending on the steric and/or inductive effects of these groups. These effects are best illustrated by comparing the relative amounts of lithiation in the respective positions, as determined by the isolation of various products. (20, 145, 146)

3,4-Disubstituted thiophenes are lithiated in the alpha position that is beta to the more effective directing group. Thus 3-*t*-butoxy-4-methylthiophene gives exclusively the 2-substituted product 56. (147) Likewise, the intermediate 57, derived from 3-*t*-butoxy-4-lithiothiophene and dimethylformamide, is metalated selectively next to the more strongly beta-directing dimethylaminomethyl group leading, after reaction with dimethylformamide, to the dialdehyde 58, (148)

Lithiation of benzothiophenes proceeds readily and exclusively at the alpha position to provide high yields of 2-substituted derivatives. Thus, on reaction of 2-lithiobenzothiophene with perchloryl fluoride a good yield of the 2-fluorobenzothiophene is obtained, (149) whereas quenching with tributyl borate followed by oxidative workup leads to the thiolactone **59**. (150, 151) When a free alpha (2) position is available, metalation never occurs in the benzene ring *ortho* to the sulfur atom, as is the case with dibenzothiophene(see p. 69). (1, 152) The intermediacy of a 2,7-dilithio species, however, has been observed with excess metalating agent. (40) 3-Substituted benzothiophenes are metalated equally well, as documented by the quantitative deuteration of the amine **60**. (153) In

contrast to N,N-dimethylphenethylamine (p. 52), no benzylic deprotonation is observed.

3.3.4.4. Isothiazoles

The activating influence of the two heteroatoms in isothiazoles permits a facile lithiation in the 5 position at very low temperatures, making this reaction

preparatively useful, as demonstrated by the formation of isothiazole-5-carboxaldehyde. (154) However, at higher temperatures metalation can be complicated by fragmentations that occur either via nucleophilic attack of the lithiating agent at sulfur (155) or by other mechanisms. (154, 155)

3.3.4.5. Thiazoles and Benzothiazoles

Thiazoles have two possible sites for metalation, namely, the 2 and the 5 positions. As with imidazoles, metalation in the 2 position is favored for derivatives lacking a 2 substituent, as illustrated for the preparation of thiazole-2-carboxylic acid. (156) 2-Substituted thiazoles such as 2-chlorothiazole, (157) undergo metalation exclusively in the 5-position. If the 2 substituent is a methyl group, however, lithiation in the 5 position, while still the major pathway, is accompanied by a lateral deprotonation of the relatively acidic methyl group. (158, 159) This side reaction normally amounts to as much as 10% of the product mixture, as evinced by the two alkylated products **61** and

62. (159) In comparison to the corresponding imidazoles, this side reaction is less pronounced, as would be expected from the higher alpha-activating ability of the sulfur atom.

Benzothiazole undergoes rapid metalation in the 2 position, as illustrated by the formation of the silane **63**. (160)

3.3.5. Selenium and Tellurium as Alpha-Activating Atoms

3.3.5.1. Vinyl Selenides

In comparison to the vinyl sulfides (p. 32) phenyl vinyl selenide can react with metalating agents via three different pathways. In diethyl ether, *n*-butyllithium adds in a Michael-type fashion (A), whereas in tetrahydrofuran attack is at selenium (B), followed by cleavage of the phenyl-Se bond. It is only through the use of lithium diisopropylamide that alpha lithiation can be achieved (C) as illustrated by the isolation of 1-methyleneundecyl phenyl selenide. (161) Tetraselafulvalene on the other hand, which is a more complex cyclic vinyl selenide, can be alpha metalated with *n*-butyllithium. (162)

3.3.5.2. Selenophenes and Tellurophenes

Like their oxygen and sulfur analogs, selenophene (163) and tellurophene can be alpha-metalated effectively to give, for example, 2-methyltellurophene in very good yield. (164) In unsymmetrically substituted derivatives the directing influence of an ether

functionality provides for regioselectivity in very much the same way as for the thiophenes, as illustrated by the formation of 3-methoxyselenophene-2-carboxaldehyde. (165)

3.3.6. Halogen as Alpha-Activating Atoms

3.3.6.1. Haloalkenes

The alpha metalation of haloalkenes, or chloroalkenes in particular, has been extensively studied and reviewed. (166) Unlike all other alpha-lithiated species reported thus far, α -lithio haloalkenes can add to electrophilic substrates (E) as well as undergo an alpha elimination of lithium halide to form carbenoid species (Eq. 16). The stability of

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} (16)$$

α -lithio haloalkenes is generally lower than that of other alpha-metalated species, and their generation must often be carried out at temperatures below -100° . Vinyl chloride, for instance, can be metalated and carboxylated quantitatively at -115° to produce α-chloroacrylic acid. (167, 168) The presence of one or two phenyl substituents tends to increase the stability of the alpha-lithiated species. Thus β -chlorostyrene can be metalated at -80° , and carboxylation gives a high yield of (E)-2-chlorocinnamic acid. (169) Even more stable is the trisubstituted species 64, which can be prepared at -43° . (170) Carboxylation at that temperature leads to formation of the acid 66. At higher temperatures, such as -12° , the lithio derivative 65 undergoes a Fritsch–Buttenberg–Wiechell rearrangement which is quite general for various *gem*-diaryl derivatives of this type. (166, 170, 171)

As with other appropriately 1,2-disubstituted olefins, beta elimination can also be a problem. For example, lithiation of (Z)-1,2-dichloroethylene followed by carboxylation leads via elimination of lithium chloride to chloropropiolic acid. It should be noted, however, that the (E) isomer gives the normal product of alpha lithiation, namely (E)-2,3-dichloroacrylic acid, in essentially quantitative yield. (167, 168)

The alpha metalation of fluoroalkenes (172, 173) and bromoalkenes, 174a,b although feasible, has received only scant attention.

3.4. Beta (Ortho) Lithiation

As defined in the introduction, beta (ortho) lithiation consists in the

replacement of a C_{sp2}-bound hydrogen atom by lithium at the position beta to a

functional group with nonbonding electrons. The designation "ortho lithiation," which is a type of beta lithiation, is used in this chapter exclusively to denote the deprotonation of the position adjacent to the directing atom or functional group attached to carbocyclic aromatic systems. The reaction itself is characterized by its high degree of regioselectivity, as with very few exceptions no other carbon atoms are deprotonated. The reaction is shown in Eqs. 17 and 18, where X represents a heteroatom and *n* may vary from 0 to 2. Metalations of this type are observed with a wide variety of groups in which X may be nitrogen, oxygen, sulfur, halogen, selenium, or phosphorus.

3.4.1. Beta (Ortho)-Directing Groups and Their Relative Directing Ability

An attempt to classify all directing groups based on their inductive electron-withdrawing or electron-donating and coordinative properties leads to the following categories:

3.4.1.1. Coordination Only

Heteroatoms that are attached to a π system (carbocyclic aromatic, heteroaromatic, olefinic) by one or at the most two saturated carbon atoms can lead to a beta metalation only via the coordinative mechanism if the effect of the saturated carbon(s) is considered neutral. The most effective groups are

basic amines, e.g., $\rightarrow CNR_1R_2$, $-CR_1(O^-)NR_2R_3$, and $\rightarrow CCH_2NR_1R_2$.

Considerably less efficient as ortho directors are alkoxides, ethers, acetals,

and ketals, e.g., $\rightarrow CO^-$, $\rightarrow COR$, and $\rightarrow C(OR)_2$. The latter groups, however,

provide excellent beta-directing effects in the lithiation of more readily metalated systems, such as π -excessive, five-membered heterocycles.

3.4.1.2. Electron-Withdrawing Groups

Electron-withdrawing groups with little or no coordinative capacity are effective beta directors because of their ability to markedly increase the hydrocarbon acidity of adjacent positions. Groups that have shown beta-directing properties

include CO, CF₃, F, Cl, Br, and I.

3.4.1.3. Electron-Withdrawing Groups with Moderate Coordination Potential A common feature of these functionalities is a moderate capacity for coordination with the lithiating agent. Their inherent effect on the beta position is electron withdrawing by induction. On coordination with the metalating agent this effect is enhanced. Such groups are, in order of decreasing effect: SO_2 -aryl, $SO_2NR_1R_2 > OR > SR > SeR >$.

3.4.1.4. Electron-Withdrawing Groups with Pronounced Coordination Potential These functional groups exhibit the ideal features for facile beta metalations, *i.e.*, a high capacity for effective coordination with the lithiating agent via the nonbonding pair of electrons of their sp^2 -hybridized nitrogen atoms, and the ability to inductively acidify adjacent hydrogens through their electron-withdrawing properties. Some of these functionalities are

 $-CONR_1R_2$, 2-oxazolines, 2-pyridines, and $C=NNR_1R_2$.

Each individual group has its own distinct beta-directing ability. Thus the establishment of a ranking system is not only of theoretical but certainly of considerable practical interest for π systems bearing more than one directing group. Various research groups have addressed themselves to this problem. (1, 2, 19, 23, 24) Their results, combined with additional inferential interpretations, permit the following generalizations:

- 1. Under kinetic lithiation conditions, the strongest beta-directing groups combine both an electron-withdrawing effect *and* the properties of a good ligand.
- 2. Among the groups in which the directing heteroatom is separated from the π system by a saturated carbon atom, thus providing no electron-withdrawing effect, a basic nitrogen atom is the most powerful director.
- 3. In the presence of non-Lewis-acid metalating agents, the rank order of the directing groups is determined largely by their inductive or acidifying effect.

In the lithiation of carbocyclic aromatic systems with coordinatively unsaturated metalating agents, the following order of beta-directing potential can be established. The list includes only those groups that either have been studied in competitive experiments or for which assumptions can be made based on the wealth of data available:

$$\begin{split} \text{SO}_2\text{NR}_1\text{R}_2^*\text{SO}_2\text{-}aryl^{23} &> 2\text{-}oxazolines \\ &> \text{CONHR}, \text{CSNHR}^{2,24} \\ &> \text{CH}_2\text{N}(\text{CH}_3)_2^{175} \\ &> \text{OCH}_2\text{N}(\text{CH}_3)_2^{175} \\ &> \text{OCH}_3 \\ \\ &> \text{S-aryl}^{177,178} \\ &> \text{NR-aryl} \\ &> \text{N}(\text{CH}_3)_2 \\ \\ &> \text{CR}_1\text{R}_2\text{O}^- \end{split}$$

(The lack of comparative data precludes an exact ranking of the halogens.)

3.4.2. Nitrogen as a Beta (Ortho)-Directing Atom

3.4.2.1. Mono-, Di-, and Triarylamines

The nitrogen atoms in N,N-disubstituted anilines rate among the poorest ortho-directing groups. This observation may be attributed to the fact that their nitrogen lone pairs are not readily available for coordination with the lithiating agent because they are strongly engaged in the resonance of the π system to which they are attached. N,N-Dimethylaniline is lithiated in refluxing hexane in 55% yield, as shown by the isolation of an ortho-substituted product. (179, 180) The inferiority of a tertiary aromatic amine as a directing group is clearly exemplified by the metalation of N,N-dimethyl-p-anisidine (67), which is lithiated exclusively (85%) ortho to the methoxyl group. (19) The observation that the *meta* isomer is lithiated in the position *ortho* to both directing groups (68, 80%) underscores the fact that the anilino nitrogen nevertheless possesses a distinct, albeit weak, ortho-directing ability. (19) The use of n-butyllithium/TMEDA greatly facilitates the otherwise sluggish metalation of anilines, as evinced by the lithiation of N,N-dimethyl-p-toluidine (80%). (63) The predominant deprotonation of the methyl group in N,N-dimethyl-o-toluidine is characteristic of this general alternative pathway

(see p. 16). (63)

No successful *ortho* lithiations of N-alkyl or N-unsubstituted anilines have been reported. One way to achieve the latter goal (see p. 48) is exemplified by the dilithiation of pivalanilide where the oxygen or nitrogen atom of the monodeprotonated species can serve as a ligand for the metalating agent. The method is general and the reaction of the dilithio species proceeds in very good yield, as illustrated by the isolation of *o*-(methylthio)pivalanilide. (181a)

An example of the lithiation of a diarylamine is that of 2-anilinonaphthalene, which occurs predominantly in the 3 position of the naphthalene nucleus. (181b) Conversely, 1-anilinonaphthalene is metalated almost exclusively in the 8 position to give, after treatment with carbon dioxide, good yields of the products 69 and 70. (181b) Thus, when there is a choice between a four- or five-membered cyclometalated intermediate, the latter is clearly favored, and lithiation takes place in a position formally gamma rather than beta with respect to the nitrogen ligand.

In the more complex system **71**, where there is a choice of three metalatable sites, namely positions 1, 6, and 13, lithiation at carbon 1 via a five-membered cyclometalated species is again clearly the preferred pathway. Carboxylation produces the acid **72** in excellent yield. (182)

Another interesting observation was made with the phenothiazines. N-Unsubstituted derivatives are lithiated more readily and regioselectively than are the N-alkylated homologs. Lithiation of N-methylphenothiazine leads to a mixture of about equal amounts of products **73** and **74**, (177, 183a) indicating the approximate equivalence of sulfur and nitrogen as *ortho*-directing atoms. However, phenothiazine itself is lithiated exclusively *ortho* to nitrogen to give **76**. (178) If it is indeed the relative unavailability of the nitrogen lone pair for chelation with the lithiating agent that makes the tertiary nitrogen of N-methylphenothiazine a poorer *ortho* director, one rationale is the following: As the formal negative charge of the monoanion generated by N-deprotonation of phenothiazine is delocalized over the entire π -system (75), the nonbonding pair of electrons of the nitrogen atom, now coplanar with the tricyclic system, becomes available for chelation with the lithiating agent. This phenomenon is not limited to phenothiazines, but has also been observed with benzo- and dibenzophenothiazines where the exclusive site of metalation is *ortho* to the (NH) group. (176, 182-183b)

The unusual *meta* lithiation of triphenylamine was explained in terms of steric hindrance by Gilman and Morton (1) in the latest review on this subject. An alternate rationalization may also be the unavailability of the nitrogen lone pair for coordination. A reexamination of these results confirms the preponderance of a rather sluggish *meta* metalation. (23)

3.4.2.2. α -Lithio(N-alkylidene)arylamines (Aryl Isocyanides)

As discussed previously (p. 20), the activating influence of the isocyanide group promotes alpha lithiation at very low temperatures, with little or no attendant addition of the lithiating agent to the electrophilic isocyanide carbon. In contrast, the isocyanide group is only a very poor *ortho* director, and therefore the initial step in the attempted *ortho* lithiation of phenyl isocyanide with *t*-butyllithium is addition of the metalating agent to form α -lithio(N-neopentylidene)aniline. The latter in turn can now be metalated in its *ortho* position by a second equivalent of *t*-butyllithium to form the dilithio species, α ,2-dilithio(N-neopentylidene)aniline. (184) Formally, therefore, one is not dealing with an *ortho* lithiation of an arylisocyanide but rather with an *ortho* metalation of an α -lithio(N-alkylidene)arylamine. It should be noted that the metalation conditions (*t*-butyllithium/TMEDA) are critical, and in the

absence of the chelating amine no ring deprotonation occurs. (184) This finding is indicative of the weak *ortho*-directing influence of the intermediate metallo aldimine group. Nevertheless, under the conditions indicated generation of the dilithio species proceeds in high yield, as illustrated by the reaction products with methyl iodide and dimethylgermanium dichloride. (184)

From a synthetic point of view the reaction permits in effect an *ortho* lithiation of a primary aromatic amine since the initial products (ketimines) can readily be hydrolyzed to the respective anilines. It should be pointed out that generally both carbon-lithium bonds in the dilithio species react with the electrophile, which may prove to be a limitation in certain instances.

3.4.2.3. Aralkylamines

The dialkylaminomethyl group is the most powerful non-electron-withdrawing *ortho* director (see p. 43). This group has served to metalate variously substituted benzene rings, (30, 33, 45) naphthalenes, (185) thiophenes, (134) isoxazoles, (186) and vinyl sulfides (23) (Eq. 19). Although the nitrogen substituents may be varied, the dimethylamino function has received the broadest attention. Nevertheless, other cases have been studied, e.g., benzylmorpholine. (187)

$$\bigcirc \overset{\mathbf{R}_1}{\underset{\mathbf{H}}{\bigcap}} \overset{\mathbf{R}_1}{\underset{\mathbf{R}_2}{\longrightarrow}} \bigcirc \overset{\mathbf{R}_1}{\underset{\mathbf{L}_1}{\bigcap}} \overset{(19)}{\underset{\mathbf{L}_2}{\bigwedge}}$$

Even the metalation of secondary amines is feasible, proceeding to give good yields of products. The use of *n*-butyllithium/TMEDA, however, is essential to attain appreciable amounts of the required dilithio species **77a,b**. (188) In N-benzylaniline the superiority of the $CH_2NR_1R_2$ group over the anilino function with respect to their *ortho*-directing abilities (see p. 45) is documented by the isolation of the alcohol **78a**. (188) The benzylic position may be fully substituted without affecting the degree of *ortho* lithiation, (33) or it may even be joined with the nitrogen atom to form a ring, as in **79**. (24) The excellent yield of **80** formed after reaction of the lithiated species with methyl iodide clearly indicates the broad applicability of this reaction.

The presence of an ortho-methyl group, as in

o-methyl-N,N-dimethylbenzylamine, leads exclusively to removal of the sp^{3} -bound hydrogen, as discussed earlier (p. 16). (67) The strength of the benzylamino group relative to other ortho-directing functions is illustrated by the observation that p-methoxy-N,N-dimethylbenzylamine is metalated exclusively ortho to the nitrogen functionality under kinetic lithiation conditions to give the alcohol 81 after quenching with benzophenone. (19, 45, 180) An interesting reversal of this result can be achieved by lithiating with the monomeric *n*-butyllithium/TMEDA complex. In this case the major (thermodynamic) product 82 is derived from lithiation ortho to the methoxyl group, with only a minor amount (7%) of 81 being formed. (19) By analogy with the anisidines, *m*-methoxy-N,N-dimethylbenzylamine is lithiated exclusively in the position ortho to both directing groups. (19, 45, 189) Further insight into the chelating ability of nitrogen and oxygen with organolithium compounds is provided by o-methoxy-N,N-dimethylbenzylamine. The predominant lithiation ortho to the methoxyl group (58% yield of 84) is postulated to occur because the substrate serves as a bidentate ligand to convert, as does TMEDA, the

tetrameric *n*-butyllithium (in ether) into the monomeric species **83**. This in turn would then serve as the actual lithiating agent and thus, like the *n*-butyllithium/TMEDA complex, preferentially lead to metalation at the most acidic position, that is, *ortho* to the methoxyl group. (19) Alternatively, of course, it could be postulated that the nitrogen lone pair in **83** is no longer available for coordination.

Benzylamines with halogen substituents (F, Cl, CF₃) in an *ortho* or *para* position are lithiated *ortho* to the nitrogen director to give, *e.g.*, the metalated species **85** and **86**. (23, 24) For the *meta*-trifluoromethyl derivative **87** lithiation occurs as expected in the position *ortho* to both substituents (**87**). (45) *meta*-Fluoro and *meta*-chloro derivatives lead to benzyne formation, and are therefore not suitable as substrates under the conditions reported. (45) However, at lower temperatures successful lithiations may be anticipated.

The facile alpha deprotonation of the thiophene nucleus precludes a successful competition of the dimethylaminomethyl group. However, by blocking the 5 position, as in **88**, lithiation proceeds normally beta to the

nitrogen function, *i.e.*, in the 3 position, to give the carbinol **89** in good yield. (43, 134)

In the 1-substituted naphthalene **90** lithiation occurs with surprising selectivity in the 8 position (185, 190) to give the alcohol **91** with only a minor amount of the 2-substituted isomer. (191) This finding parallels the results with 1-alkoxynaphthalenes (192) (p. 63) and 1-anilinonaphthalenes 181 (p. 46). In the 2-substituted naphthalene **92** metalation occurs both in the 1 and 3 positions, as reflected by the isolation of approximately equal amounts of products **93** and **94**. (185, 191)

3.4.2.4. Arylethylamines

The phenethylamine **95a** can be lithiated in minimal yield in the *ortho* position, (193, 194) although there are conflicting reports. (195) The predominant pathway is benzylic deprotonation followed by beta elimination. By blocking the benzylic position, as in **95b**, *ortho* metalation can be achieved in poor yield. (195) A more interesting and potentially rather useful way to circumvent the elimination problem is illustrated by the lithiation of the phenethanolamine **96**, in which the alkoxide prevents benzylic deprotonation. Thus *ortho*-substituted derivatives such as the silane **97**, can be isolated in moderate to good yields. (175)

Moving the basic nitrogen still further from the aromatic nucleus as in N,N-dimethyl-3-phenylpropylamine prevents *ortho* metalation, and benzylic deprotonation becomes the exclusive pathway of the reaction. (19, 195) This is not unexpected in view of the fact that the lithium at the benzylic position can form the favored five-membered ring through chelation with the basic nitrogen.

3.4.2.5. *a* -Alkoxidobenzylamines

α -Alkoxidobenzylamines of type 98, obtained by the addition of an

organolithium reagent to a tertiary amide, can be successfully used as *ortho*-directing groups. The sequence, as outlined in Eq. 20, permits a one-pot transformation of an organolithium reagent and a tertiary carboxamide into an *ortho*-substituted aryl ketone **100**. The basic nitrogen in the tetrahedral intermediate **98** is assumed to be responsible for directing the subsequent lithiation into the *ortho* position to produce the dilithiated species **99**. The process is another example of *ortho* metalation of an α -*gem*-disubstituted

benzylamine. The versatility of the reaction is indicated by the transformation of *p*-chloro-N,N-dimethylbenzamide into 4-chloro-2-methylacetophenone and to the benzophenone **101**. (196) The latter example is quite interesting in that there are two possible sites for *ortho* metalation, namely, in the chlorinated and in the unsubstituted phenyl rings. The known rate-enhancing effect of the *para*-chloro substituent (p. 14) provides good regioselectivity, and no detectable lithiation is observed in the unsubstituted ring. (196)

Lithiation of the selenophene intermediate **102** exemplifies the superiority of an α -alkoxidoamine over a *t*-butoxy group (under kinetic conditions) in terms of their beta-directing ability, as illustrated by the formation of 4-*t*-butoxyselenophene-2,3-dicarboxaldehyde. (148)

3.4.2.6. Arylcarboxamides and Thioamides

Deprotonated secondary carboxamides unlike their carboxylate analogs, (197) are essentially inert toward nucleophilic attack by organolithium reagents. (54) In addition, they possess not only electron-withdrawing, but also chelating characteristics. The combination of these properties has led to the development of the selective *ortho* functionalization of arylcarboxamides by lithiation (Eq. 21).

Primary benzamides fail to undergo *ortho* lithiation even with an excess of *n*-butyllithium. (54) Certain tertiary amides, however, can successfully be metalated, particularly if the metalation is facilitated by additional factors, such as the influence of an alpha activator, as in

N,N-diethyl-3-thiophenecarboxamide (134) or β -aminoacrylamides, (57a) or by the careful selection of conditions. (55, 56) For instance,

N,N-diethylbenzamide can be lithiated with *s*-butyllithium/TMEDA at low temperatures and subsequently treated with various electrophiles. Reaction with methyl iodide, for example, gives a good yield of N,N-diethyl-*o*-toluamide. (56) In general, however, tertiary benzamides suffer nucleophilic attack by the lithiating agent (54, 196) (see p. 53) for the practical use made of this fact), and it is the secondary arylcarboxamides that are synthetically more useful. The nature of the nitrogen substituent does not appear to influence the outcome of the lithiation to any noticeable extent, and both alkyl or aryl groups are feasible. The use of the *t*-butyl group permits a later transformation into primary amides or nitriles. (24) There are few substituents (see p. 16) that affect this rather general reaction in a negative manner, and the directing potency of the carboxamide group virtually assures regioselective metalation in its *ortho* position. The reactions generally proceed in good yield, as illustrated by the lithiation of N-methylbenzamide and the isolation of the carbinol **103**. (54, 198)

It should be noted that certain primary products are relatively unstable, particularly those derived from addition of the lithiated amide to aldehydes, ketones, nitriles, and epoxides. The tendency of these adducts to form cyclic products is rather high, and only under carefully controlled conditions can the intermediates be isolated. (199) This may in fact be one of the reasons for the relatively modest yields often cited for isolation of primary products. Alternatively, if the resulting heterocycles are desired, the method is well suited for obtaining bicyclic products, such as phthalides **104**, (200) phthalimidines **105**, (24) **106**, (201) or isocoumarins **107**. (202) The first (**104**) and last examples (**107**) also illustrate the superiority of the carboxamide function over a fluorine and a methoxyl group as an *ortho* director. Numerous additional studies have confirmed this fact. (**19**)

For N-alkyl-*o*-toluamides the exclusive pathway of the lithiation reaction is again deprotonation of the relatively acidic *ortho*-methyl group (64) (see p. 16).

Secondary thiobenzamides can also be utilized for regioselective *ortho* metalation. (65) The formation of the thioether **108** illustrates this reaction. Although the tendency of primary adducts of this type to form cyclic products is apparently no less than that of the carboxamides, the thioamide function may nevertheless prove useful for further synthetic elaboration via sulfur alkylation and extrusion. (65)

3.4.2.7. 2-Aryloxazolines and 2-Aryloxazines

The azomethine linkage has long been recognized as an excellent ligand. (203) This property, combined with a strong electron-withdrawing effect, makes this functionality one of the most powerful beta directors known to date. 4,4-Dimethyl-2-oxazolines and 1,3-oxazines constitute synthetically useful directing groups that contain this common structural element. The *ortho* lithiation of 2-aryloxazolines proceeds readily even at low temperatures. The *ortho*-metalated intermediates react with numerous electrophiles. (46, 204-206) For example, the method can be used to prepare 2,6-dideuterated benzoic acids. (204) For the *para*-methoxyl derivative **109** lithiation occurs, not unexpectedly, regioselectively in the position *ortho* to the oxazoline ring, as the aldehyde **110** is the only product isolated. (46) In fact, the directing capacity of the oxazoline group is so high that it can compete successfully

with the alpha metalation of the thiophene nucleus, one of the more readily lithiated substrates known. (139) Moreover, despite the susceptibility of the pyridine nucleus to attack by nucleophilic metalating agents, the oxazoline derived from pyridine-4-carboxylic acid can successfully be lithiated in the 3 position. (207)

Thus far the following limitations of this reaction have been observed: *ortho*-methoxyl 208a,b (111a) and *ortho*-fluoro derivatives (208c) (111b) suffer clean nucleophilic displacement of the methoxyl or fluoro groups in preference to *ortho* metalation, whereas *ortho*-tolyl derivatives undergo the familiar deprotonation at the methyl group, (46) quite analogous to the *o*-toluamides (p. 16). (64) It should be noted that in certain cases nucleophilic substitution can be suppressed in favor of *ortho* lithiation by the use of *n*-butyllithium/TMEDA. (23) Interestingly, treatment of 2,2 -*m*-phenylenebis(4, 4-dimethyloxazoline) with alkyl or aryl lithium reagents leads to addition of the metalating agent to the aromatic ring. (208d) Normal *ortho* lithiation at the 2 position, however, can be effected with lithium diisopropylamide/TMEDA.

3.4.2.8. Arylcarbimines

The synthetic utility of carbimines as *ortho*-directing groups is limited by the propensity of the azomethine linkage in such substrates to suffer attack by a nucleophilic lithiating agent or to facilitate alpha deprotonation. (209, 210) Nevertheless, in systems where neither of these two side reactions can or does occur, the C=N group again proves to be a very powerful *ortho*-directing functionality.

Imines of alkyl aryl ketones clearly undergo deprotonation of the rather acidic alpha position. Nevertheless, *ortho* metalation can also be observed, (211) although it is of little synthetic value. For aryl carboxaldimines, which lack acidic alpha protons, nucleophilic attack is the generally observed reaction, even with N-*t*-butylimines. (24) In special cases, such as in the cyclohexylimine **112**, where *ortho* metalation is facilitated by the

additional directing effect of an ether function, good yields of *ortho*-substituted products such as **113** are observed. (212)

3.4.2.9. 2-Arylpyridines

Although pyridines generally are susceptible to nucleophilic attack by the metalating agent on the azomethine linkage, some can serve as powerful *ortho*-directing groups. Metalation of the arylpyridine **114** followed by

deuteration indicates that the kinetic product **115** arises from an *ortho* lithiation and slowly equilibrates to the thermodynamic product **116**. (213, 214) When viewed in the light of the rather facile lateral deprotonation of picolines, (215) the successful *ortho* lithiation of **114** clearly underscores the marked directing ability of the pyridine nucleus. In 2-(2-thienyl)quinoline the *ortho*-directing ability of the quinoline nitrogen leads to predominant metalation in the 3 position of

the thiophene nucleus and only a small amount of alpha metalation, as reflected by the isolation of the silanes **117** and **118**. (138) The significance of this result becomes apparent in the discussion of the competitive *ortho vs*. alpha lithiations (p. 77).

3.4.2.10. Hydrazones

Although the N,N-dialkylhydrazones of alkyl aryl ketones suffer from the same alpha deprotonation as imines, a good degree of *ortho* metalation is nevertheless observed. (23) Thus metalation of the hydrazone **119** followed by reaction with dimethyl disulfide produces the bisthioether **120** in good yield. (23) N,N-Dimethylhydrazones of diaryl ketones, on the other hand, appear to be promising substrates for *ortho* metalations, as indicated by the formation of the thioether **121**. (23)

3.4.2.11. 3-Arylpyrazoles

1-Alkyl-3-arylpyrazoles incorporate the same functional array of nitrogen atoms as hydrazones. Unlike the diaryl hydrazones, however, such pyrazoles offer two additional sites of deprotonation, both of which are attacked, (23) namely, the 5 position of the pyrazole nucleus and the N-alkyl substituent (see p. 24). (86) Both side reactions can be suppressed by a bulky tertiary nitrogen substituent, such as the methoxyisopropyl protecting group in the pyrazole **122**. Metalation now proceeds predominantly at the *ortho* position. After removal of the protecting group the ketone **123** can be isolated in fair yield. (23)

3.4.2.12. 2-Arylimidazolines

2-Arylimidazolines are metalated in their *ortho* position in a manner reminiscent of the 2-aryloxazolines. Thus lithiation of 2-phenylimidazoline

followed by reaction with p-chlorobenzaldehyde produces the alcohol **124**. (216)

3.4.2.13. Nitriles

The use of a nitrile as an *ortho* director is limited because of its highly electrophilic character. One report describes the low temperature alpha metalation of 3-cyanothiophene, which evidently is kinetically favored over nucleophilic addition. (217) The predominant formation of 3-cyano-2-thiophenecarboxylic acid attests to the directing influence of the cyano group. An interesting example is *m*-chlorobenzonitrile. The basicity of the non-nucleophilic lithium tetramethylpiperidide is apparently sufficient to metalate the position *ortho* to both substituents. The stability of the lithiated species at low temperatures permits reaction with electrophiles. For example, the thioether **125** can be isolated in moderate yield. (24)

For α , β -unsaturated nitriles beta metalation can be achieved under carefully selected conditions, as shown by the deuteration of the dihydropyridine **126**. (218) The analogous lithiation of β -aminoacrylonitriles is more complex (see p. 19). (57c)

3.4.3. Oxygen as a Beta (Ortho)-Directing Atom

3.4.3.1. Alkyl Vinyl Ethers

Lithiations in the beta position of vinyl ethers, unassisted by additional directing groups, have not been reported. However, when the anion is further activated by the presence of an adjacent chlorine, such as in (E)-2-chlorovinyl ethyl ether, metalation occurs at low temperatures, as indicated by the quantitative conversion to the acid **127**. (174a) Conversely, when the same conditions are applied to (Z)-2-chlorovinyl ethyl ether, the corresponding acid is produced in only 40% yield. (174a) This may be a result of both the absence of a chelating effect by the ether oxygen and the fact that the lithiated species can undergo a *trans* beta elimination. Similar observations were made with the corresponding (E/Z)-2-bromovinyl ethyl ethers. (174b)

3.4.3.2. Alkyl Aryl Ethers

Alkyl aryl ethers are by far the most widely studied group of compounds, not only in terms of the scope of the metalation, but also with respect to the mechanism of the reaction. A recent study gives a systematic account of the relative *ortho*-directing ability of the methoxyl group in relation to other functionalities. (19)

Most lithiations of alkyl aryl ethers are carried out in diethyl ether as solvent, largely because the original reports call for it. (1) More recently, however, it was realized that, as with diaryl ethers, the use of tetrahydrofuran accelerates the metalation considerably and greatly improves the yields of products. Of the numerous examples studied in carbocyclic aromatic systems, a few deserve special attention. 1,3-Dimethoxybenzene illustrates a characteristic common to most other directing groups, namely, the highly selective lithiation in the position ortho to both methoxyl groups. The extent of metalation in that position is 96–97%. (36, 50) As illustrated, reaction with 1,6-dibromohexane gives an excellent yield of the diarylhexane **128**. (219) Interesting aspects of the metalation of the bromoether **129** are its regioselectivity and, quite obviously, the absence of any appreciable metal-halogen exchange (220, 221) (p. 17). The use of phenyllithium, rather than *n*-butyllithium, in the preparation of 130 should be noted. Another example of regioselectivity is the lithiation of chlorotrimethoxybenzene (131), which is extremely facile, being complete within 3 minutes at -70°. The major product 132 is derived from metalation

between the methoxyl group and the chlorine, with formation of only a minor amount of the isomer **133**. (222, 223) Although

chlorine is known to be a less effective *ortho* director for coordinatively unsaturated metalating agents than the methoxyl group, the apparent inconsistency can be accounted for by the greater *acidifying* effect of the chlorine, (31, 32) since for each lithiatable position the necessity for coordination of the metalating agent is satisfied by either *single* methoxyl group. Metalation of 1,2,3-trimethoxybenzene in tetrahydrofuran proceeds rapidly to produce the deuterated product **134** in excellent yield. (224)

The side reaction common to most *ortho* lithiations, namely, the deprotonation of an *ortho*-methyl group, is also apparent in *o*-methylanisole, albeit to a lesser extent (1, 61) (see p. 16). Cyclic alkyl aryl ethers such as **135** can be metalated as expected in the position *ortho* to the oxygen function to give upon carbonation the acid **136** in respectable yield. (225)

The controversy concerning the lithiation of 1-methoxynaphthalene was apparently caused not only by divergent interpretations but also by differing reaction conditions. (226, 227) The conditions indeed play an important role, particularly with respect to the lithiating agent and its origin. A thorough investigation of the various factors affecting the ratio of isomeric products indicates that under carefully controlled conditions either one of the isomers **137** and **138** can be obtained essentially as the exclusive product. (192) These results imply that metalation in the 2 position, which is achieved exclusively with *n*-butyllithium/TMEDA, is strictly an acid–base reaction (see p. 10), whereas in hydrocarbon solvents the precoordination of the lithiating agents leads to the more favorable five-membered cyclometalated intermediate. The regioselective metalation in the 8 position can formally be compared to the recently reported

ortho lithiation of α -silyloxystyrenes in which, in fact, an enol ether serves as the directing group. (228) Here again, the ring size of the cyclometalated intermediate is five rather than four as for anisoles. The analogous observation is made in the case of 1-anilinonaphthalenes (p. 46). The metalation of 2-methoxynaphthalenes also depends on the conditions. In tetrahydrofuran the 3-lithiated species is formed almost exclusively, as indicated by the isolation of the imine **139**, whereas other conditions lead to a mixture of 1- and 3-substituted products with the latter predominating. (17, 229, 230)

In five-membered, π -excessive heterocycles the alkoxy group can provide regioselectivity for alpha metalations as outlined earlier (p. 37). In the absence of any free alpha protons, as in 2-methoxy-5-methylthiophene, the beta-directing effect of the ether function leads to metalation in the 3 position to give the carboxylic acid **140**. (231) In the isoxazole **141** metalation facilitated by the methoxyl group occurs in the only available position, and the iodo derivative **142** is obtained in high yield. (232)

3.4.3.3. Alkoxyalkyl Aryl Ethers

Free phenols can be metalated in their *ortho* position, (1, 233) but the yields of products are too low to be of preparative interest. Considerably more valuable is the metalation of protected phenols such as methoxymethyl or tetrahydropyranyl ethers. The yields in the metalation of these derivatives are generally good to excellent, as illustrated by the preparation of the aldehyde **143** (234) using the methoxymethyl protecting group, and the alcohol **144**, (235) where the tetrahydropyranyl ether is utilized.

3.4.3.4. Diaryl Ethers and Condensed Diaryl Ethers

The ability of *n*-butyllithium to deprotonate the *ortho* position of dibenzofuran in particular and diaryl ethers in general was recognized as early as 1934. (1) This observation constitutes the discovery of the heteroatom-facilitated metalations discussed in this chapter. Competitive experiments show that the ethers have a greater *ortho*-directing effect than either sulfides or amines. (1) This differential directing ability is best documented by the lithiation of phenoxathiine, in which monometalation occurs exclusively adjacent to oxygen. Even dimetalation, using excess *n*-butyllithium, takes place predominantly in the two positions *ortho* to oxygen and only to a smaller extent at position 1. (236, 237) Likewise, N-ethylphenoxazine is metalated adjacent to oxygen exclusively to give the acid **145** (p. 66). (238)

The lithiation of diaryl ethers is used extensively to prepare not only specifically *ortho*-substituted derivatives, but also condensed tricyclic systems. Dimetalation of diphenyl ether, for example, followed by reaction with a dichlorosilane gives reasonable yields of phenoxasilins (239-242) such as **146** or, with tetrachlorosilane, the spirosilane **147**. (239)

In asymmetrically substituted diaryl ethers the rate-increasing or -decreasing influence of substituents can be used to provide regioselective

ortho lithiation. Thus *p*-chlorophenyl phenyl ether is lithiated in the substituted ring to give the silane **148**. (243)

3.4.3.5. Alkyl Aralkyl Ethers and Aralkyl Alcohols

Ortho lithiation of alkyl benzyl ethers is generally not feasible because of their well-known propensity to undergo benzylic deprotonation, followed by Wittig rearrangement. (244a) Nevertheless, alkoxymethyl groups possess a proven beta-directing effect and are extensively used to provide regioselectivity in the alpha metalation of π -excessive, five-membered heterocycles. The most commonly encountered functionalities are the methoxymethyl group and the

acetals and ketals of carbonyl compounds. Thus 3-(methoxymethyl)thiophene is metalated exclusively in the 2 position to give a high yield of the acid **149**. (142) This is in distinct contrast to the random metalation of 3-methylthiophene (p. 38). Furan-3-carboxaldehyde ethylene ketal is not only metalated more rapidly than furan itself but also regioselectively in the 2 position, as illustrated by the isolation of the ketone **150**. (113) For 1-(methoxymethyl)indole the methoxymethyl group provides a more rapid and clean lithiation in the 2 position than is observed for 1-alkylindoles (**85**) (p. 23).

In carbocyclic aromatic systems, where benzylic ethers can generally not serve as *ortho*-directing groups, benzylic alcohols may be used instead. The hydroxyalkyl group is by itself a poor *ortho* director, as evinced by the low-yielding metalation of benzyl alcohol. (1) Under forcing conditions, however, lithiation can be effected remarkably well. (244b) In addition, it can be successfully utilized to provide a desired regioselectivity in more complex aromatic templates with additional *ortho*-directing functionalities. In the octahydrophenanthrene system **151**, for example, lithiation proceeds with a high degree of regioselectivity in the position *ortho* to both the methoxyl and hydroxyalkyl groups to produce, after carboxylation, the tetracyclic lactone **152**. (245)

3.4.3.6. Arylcarboxylic Acids, Esters, and Diaryl Ketones

In contrast to arylcarboxamides, the direct *ortho* lithiation of arylcarboxylic acids is generally not feasible because of the increased electrophilicity of the carboxylate group. Thus treatment of lithium benzoate with an additional equivalent of an organolithium reagent leads to addition rather than metalation, providing useful ketone syntheses. (197) However, lithiations in the position *ortho* to the carbonyl groups of acids and ketones are reported in a few special cases. For example, the use of the non-nucleophilic lithium dialkylamides is successful with thiophene-3-carboxylic acid. (246) Alternatively, metalation can be achieved even with alkyllithium reagents if, because of additional activation, the rate of deprotonation is faster than the rate of addition of the lithiating agent to the carboxylate carbonyl group. For example, the bromo compound **153** is prepared in good yield from 3-methylisothiazole-4-carboxylic acid. (154) Similar reactions, albeit of little synthetic value because of self-condensations, are reported for arylcarboxylic esters and diaryl ketones. (53) For example, the phthalan **154** can be obtained in high yield. (53)

3.4.4. Sulphur as a Beta (Ortho)-Directing Atom

3.4.4.1. Alkyl Aryl Sulfides

The ability of a thioether to facilitate *ortho* lithiation is intermediate between that of ethers and anilines. The lithiation of thioanisole is, in contrast to that of anisole, more complex because of an equilibration of the kinetic ring metalation product and the thermodynamic sidechain-metalated species (Eq. 22). (1, 58) Hence this *ortho*

functionalization is of little preparative value. However, the lateral deprotonation, which can be made the exclusive reaction, has received considerable attention. (247) The reason for this competitive reaction must be the additional anion stabilization by the *d* shells of sulfur. (59) Such a stabilizing effect is clearly not available for anisole.

Thioethers, however, do provide high regioselectivity in the alpha metalation of π -excessive, five-membered heterocycles. Evidently, in such substrates deprotonation of the alkylmercapto group is not a problem, possibly because of the greater thermodynamic stability of the alpha-metalated species. 3-(Methylthio)thiophene is lithiated regioselectively in the 2 position to give a good yield of the corresponding acid. (248) For the isoxazole 155 the thioether function allows rapid *ortho* lithiation to produce the carboxylic acid 156 in good yield. (232)

3.4.4.2. Diaryl Sulfides and Condensed Diaryl Sulfides

Diaryl or condensed diaryl sulfides can be metalated without occurrence of the side reaction reported for alkyl aryl sulfides. Dibenzothiophene is lithiated as expected, *ortho* to sulfur. (1, 152) The use of tetrahydrofuran as solvent greatly facilitates this reaction, as indicated by the good yield of 4-bromodibenzothiophene. (152, 249) The reported yields for the lithiation of thianthrene seem rather low, as exemplified by the preparation of the boronic acid **157**. (250) It is conceivable that the use of tetrahydrofuran could be equally beneficial here.

As already discussed, the metalation of N-alkylphenothiazines leads to approximately equal amounts of products derived from lithiation *ortho* to both sulfur and nitrogen, (177) whereas in phenoxathiins the oxygen is clearly the dominant directing group. (236, 237)

The lithiation of diphenyl sulfide is reported to give a moderate yield of products derived from *ortho* metalation. (1, 251) However, a more recent

investigation indicates that the crude metalation products are 9:1 mixtures of *ortho* and *meta* isomers. (252)

3.4.4.3. Sulfones

The potential of the sulfone group as an *ortho* director is limited to diaryl and *t*-alkyl aryl sulfones for reasons outlined earlier (p. 16). An additional limiting factor is the propensity of aryl sulfones, in particular naphthyl sulfones, to undergo conjugate addition of the lithiating agent. (253) Nevertheless, the sulfone is a powerful directing group, and clean *ortho* metalation can be achieved at low temperatures. Thus *t*-butyl 1-naphthyl sulfone is metalated exclusively at the 2 position at -70° to give the acid **158**, whereas conjugate addition occurs at the reflux temperature of ether, leading to the *trans*-substituted dihydronaphthalene **159**. (253) The increased directing effect as compared with the ether function is evinced by the dilithiation of phenoxathiin-10,10-dioxide, which is metalated exclusively at the positions *ortho* to the sulfonyl group to produce the diacid **160**. (236) This is in contrast to phenoxathiin itself, where the ether function is the dominant directing group.

A unique example is the metalation of *m*-bromophenyl phenyl sulfone, which occurs at the position *ortho* to both directing groups, leading to the

acid **161**. (69) The example is remarkable insofar as there is neither any appreciable metal-halogen exchange nor any benzyne formation. The *para* isomer is also metalated *ortho* to the sulfone with less than 2% metal-halogen exchange. (69) These results attest not only to the powerful directing influence of the sulfone group but also to the thermodynamic stability of the resulting anion.

3.4.4.4. Arylsulfonamides

Secondary and tertiary sulfonamides are the strongest *ortho*-directing groups known to date, at least in carbocyclic aromatic systems. (2, 19) Unlike the tertiary arylcarboxamides, (56) tertiary arylsulfonamides can be lithiated without any special conditions, *e.g.*, N,N-dimethylbenzenesulfonamide is metalated cleanly in its *ortho* position, and the imine **162** can be isolated in very good yield. (254) For secondary sulfonamides two molar equivalents of an alkyl lithium are necessary to achieve nuclear metalation. The reactions are rapid and the lithiated species may be treated with a variety of substrates to give, quite generally, high yields of products such as the allylic alcohol **163**. (24) 1-Sulfamoylnaphthalenes are metalated in the 8 position predominantly, (255)

whereas the 2 isomers give largely the 1-lithiated intermediates. (255) Because of the low yields of isolated products, the possibility of additional regioisomers, particularly in view of the facts stated about the 1-naphthyl sulfones (p. 70), (253) cannot be excluded. A recent study on the competitive lithiation of N-*t*-butyl-N-methyl-*p*-benzenesulfonamide and 2-(*p*-chlorophenyl)-4,4-dimethyl-2-oxazoline reveals that the sulfonamide substrate is lithiated almost exclusively. (23)

One side reaction deserving elaboration pertains to an apparently quite general rearrangement observed with lithiated arylsulfonamides of N-substituted anilines (256-259) leading to N-substituted-*o*-(arylsulfonyl)anilines. The mechanism of this rearrangement is now rigorously established. (257) The initial step is the normal *ortho* lithiation, for example, of the sulfonamide 164 to give 165, which is stable at -70°. Above -20° a rate-determining transmetalation occurs, giving 166 which then rearranges to the sulfone 167. (256, 257) The intramolecular character of

the transmetalation is documented by the stability of the cyclic derivative **168**. Only upon addition of a second equivalent of *n*-butyllithium is **168** metalated to the dilithio species **169**. This then rearranges to produce, after workup, the tricyclic sulfone **170** in good yield. (257)

The preferential deprotonation of an *ortho*-methyl group rather than nuclear metalation is also observed with arylsulfonamides (p. 16). (66)

3.4.5. Halogens as Beta (Ortho)-Directing Atoms

3.4.5.1. Aryl Fluorides and Vinyl Fluorides

Fluorine is guite an effective ortho director largely because of its inductive capacity rather than any coordinating effect. Of all the halogens fluorine exerts the strongest acidifying effect on ortho positions. (31, 32) Pentafluorobenzene, for instance, exhibits a pK_a of 23 vs. 30.5 for pentachlorobenzene and 37 for benzene itself. (12) Although the products derived from metalation of such substrates, namely, 2-lithiofluorobenzenes, can undergo elimination to form benzynes, they may nevertheless be prepared efficiently and in a stable form at temperatures below -50°. Fluorobenzene itself can thus be lithiated in tetrahydrofuran solution, and upon carboxylation o-fluorobenzoic acid is obtained in 60% yield. (260) Lithiation of 1-fluoronaphthalene leads after carboxylation to 1-fluoro-2-naphthoic acid, (260) whereas the 2 isomer gives approximately equal amounts of 2-fluoro-1-naphthoic acid and 3-fluoro-2-naphthoic acid. (261) The ease of metalation, as well as the stability of the metalated species, is somewhat greater with polyfluorinated benzenes. (6) 1,2,3,4-Tetrafluorobenzene, for example, is lithiated readily even at -70°. Upon reaction with mercuric chloride the diarylmercury derivative 171 is isolated in high yield. (262) In terms of relative directing abilities toward coordinatively unsaturated metalating agents, fluorine ranks below the methoxyl group, since p-fluoroanisole is lithiated exclusively ortho to the ether function. (19) Fluorine also serves as a beta director for the metalation of cyclic olefins. The nonafluorocyclohexene 172, for instance, is lithiated readily to produce after carboxylation the corresponding acid in very good yield. (263)

3.4.5.2. Aryl Chlorides and Vinyl Chlorides

The metalation of chlorinated aromatics is complicated not only by their propensity for benzyne formation but also by the possibility of halogen–metal exchange. (6, 100) Although the *ortho* metalation of chlorobenzene is not practical because of the rapid formation of benzyne, in polychlorinated aromatics the inductive effect of neighboring halogen atoms is sufficient to provide some stability to the lithiated species. Metal–halogen exchange can often be suppressed and even eliminated by using appropriate metalating agents. A good example is the lithiation of 1,2,3,4-tetrachlorobenzene, where either the product of *ortho* lithiation (173) or chlorine–lithium exchange (174) can be obtained almost exclusively. (264)

Metal-halogen exchange is apparently not a problem in the lithiation of 2,3,6-trichloropyridine, which metalates quite selectively to give the 4-picolyl derivative **175**. (265) In the lithiation of 3-chloro-4,5-dihydrofuran the beta-directing influence of the chlorine facilitates the alpha metalation of the dihydrofuran system. The methylated product **176** can be obtained in respectable yield. (266)

3.4.5.3. Aryl Bromides

Whereas metal-halogen exchange is only a minor side reaction with chlorinated aromatics, it becomes with relatively few exceptions almost the exclusive pathway in the attempted *ortho* lithiation of bromobenzenes with alkyllithiums. Nevertheless, bromine, like other halogen atoms, does have a pronounced *ortho*-directing capacity, as evinced by the rapid formation of *ortho*-lithiated intermediates when lithium dialkylamides are used. However, except for isolated instances in which special stabilizing effects are operative, these intermediates are of no preparative value for electrophilic reactions, because rapid aryne formation occurs. (32) The exchange and elimination problems are generally only minor in substrates bearing a powerful *ortho*- or alpha-directing group. In the metalation of 3-bromothiophene the inductive effect of bromine provides excellent regioselectivity, in that 3-bromo-2-thiophenecarboxylic acid is almost the exclusive product. (48) Another example of this type is the lithiation of 3-bromophenyl phenyl sulfone, which occurs regioselectively between both groups (p. 71). (69)

3.4.5.4. Aryl lodides

Lithiation at the position *ortho* to an iodo substituent in preference to metal-halogen exchange is only observed in readily metalated sulfur-containing heterocycles. By analogy with the bromo analog cited earlier, 3-iodothiophene can be metalated to produce after carboxylation 3-iodo-2-thiophenecarboxylic acid as the major product. (68) Likewise, 4-iodo-3-methylisothiazole is converted into the corresponding 5-carboxaldehyde **177** in respectable yield. (154)

3.4.5.5. (Trifluoromethyl)benzenes

The trifluoromethyl group, generally considered a pseudo-halogen, exerts a moderate *ortho*-acidifying effect. It appears to be a considerably weaker director than the methoxyl group for coordinatively unsaturated metalating agents, since *p*-(trifluoromethyl)anisole is lithiated exclusively in the 2 position
by *n*-butyllithium. (19) Mono- or bis(trifluoromethyl)benzenes are lithiated quite readily, (49, 50) and the corresponding carboxylic acids are produced in good to excellent yield. However, it should be noted that the trifluoromethyl group is an exception in that, unlike most other *ortho*-directing groups, the bis-1,3-disubstituted derivatives, *e.g.*, *m*-bis(trifluoromethyl)benzene, do not metalate preferentially in the 2 position, as indicated by the isolation of the two acids **178** and **179**. (49, 267-269) The reasons for this unusual result are not clear.

3.4.6. Other Beta (Ortho)-Directing Groups

3.4.6.1. Arylphosphine Oxides and Imides

Although triphenylphosphine is reported to undergo an anomalous *meta* metalation, (1) arylphosphine oxides and imides can be lithiated in the expected *ortho* position. Thus, phenylbis(3-thienyl)phosphine oxide is dimetalated regioselectively with *n*-butyllithium in the 2 and 2 positions of the thiophene rings (270) to give, after reaction with ethyl benzoate, the tricyclic alcohol **180**. Metalation of the phosphine imide **181** occurs without halogen-metal exchange in the position *ortho* to phosphorus to give the silane **182**. (271) The ease of metalation can be ascribed to both the ligand effect of the phosphinimidyl group and its inductive effect on the *ortho* position. (271) The use of phenyllithium in such metalations appears rather critical, however. The scope of the phosphine oxide and imide metalations is limited to the triaryl derivatives, since the alkyl group is preferentially deprotonated in alkyl diarylphosphine imides. (271, 272)

3.4.6.2. Selenides

As with its sulfur isostere, the *ortho*-directing potential of selenium is confined to diaryl selenides and the alkyl selenides of π -excessive five-membered heterocycles. In the heterocyclic examples the very modest directing ability of the selenide group provides minimal regioselectivity, as illustrated by the ratio of the acids **183** and **184**. (140) The only reported *ortho* metalation of a diarylselenide is that of dibenzoselenophene. After carboxylation an essentially quantitative yield (96%) of the 4-carboxylic acid was obtained. (273)

3.5. Competitive Beta vs. Alpha Lithiation

The presence of both a beta- and an alpha-directing group within the same molecule provides for some interesting possibilities. Whereas it is accepted that alpha metalations generally proceed with greater facility than beta lithiations, specific cases have been studied in which both reactions can successfully compete. In fact, a judicious choice of conditions can allow either one of the two processes to become dominant. The following examples are illustrative of the general concept.

2-(2'-Thienyl)pyridine offers two potential sites for lithiation: the 3 position (invoking the beta-directing effect of the pyridine nitrogen) and the 5 position (alpha lithiation). By the appropriate combination of solvent, temperature, and metalating agent, either of these two positions can be lithiated predominantly, as documented by the formation of the silanes 187 and 188. (138) It appears that the beta metalation is kinetically controlled because the species 185 slowly equilibrates to the thermodynamically more stable 186 under the reaction conditions. Evidently, under kinetic conditions n-butyllithium (tetrameric in ether (14)) preferentially coordinates with the pyridine nitrogen; abstraction of the nearest proton then leads to 185. By contrast, in tetrahydrofuran, n-butyllithium, (a solvated dimeric species (15)) acts more as a base than as a Lewis acid (see p. 11), thus abstracting the most acidic proton in the alpha position of the thiophene nucleus. The fact that lithium disopropylamide in ether produces essentially the same result is consistent with this rationale, as it displays, unlike tetrameric *n*-butyllithium, only negligible Lewis-acid character.

A similar observation is made in the lithiation of the oxazoline **189**. The major product in tetrahydrofuran is derived from alpha lithiation (**191**), whereas the use of ether leads almost exclusively to beta lithiation and subsequently to the alcohol **190**. (**139**) This result is the basis for the generalization pointed out earlier (p. 36) that in the thiophene system oxazolines are the strongest beta-directing groups known.

Another example is 1-*t*-butyl-3-(*p*-chlorophenyl)pyrazole. Again, two different metalation sites are possible, but this time in two separate rings of the molecule. The first and evidently more reactive site is the 5 position of the pyrazole ring; the alternative site is the *ortho* position of the phenyl ring, for which the imine group of the pyrazole ring acts as the

ortho director. Here, the choice of appropriate conditions permits making either reaction dominant: in tetrahydrofuran the products are almost exclusively derived from the alpha-lithiated species **192**, whereas in ether the product arising from the *ortho*-lithio derivative **193** dominates. (23)

It is certainly no coincidence that in all these examples the azomethine linkage is the director that can successfully compete with the generally facile alpha lithiation process. As alluded to in the thiophene section (p. 36), this appears to be the only group capable of inducing beta lithiation in the presence of an alpha activator. The unique character of the azomethine linkage is apparently the combination of an appreciable electron-withdrawing effect with the pronounced coordinative capacity of the nonbonding orbital of the imine nitrogen.

One additional interesting facet of the competing alpha *vs.* beta lithiation is the relative reactivity of these carbon-lithium bonds toward electrophiles. Subtle differences can be turned into synthetic advantages, particularly in reactions with only moderately active electrophilic substrates. One such example is illustrated by the doubly protected arylpyrazole **194**, which is metalated both in its alpha and its *ortho* position. Because of the lesser reactivity of the lithiated pyrazole compared to the lithiated phenyl ring, a selective reaction with a tertiary amide is possible. The reactivity of the lithiated pyrazole in the dilithio species **195** is diminished, not only for electronic reasons, but additionally because of the combined chelating effect provided by the three ether oxygens. Accordingly, the product **196** of this reaction is the one derived from *ortho* lithiation. (23) It should be noted that more reactive substrates, such as deuterium oxide or dimethyl disulfide, do indeed lead to products arising from reaction at both sites. (23)

3.6. The Substrate

The number of substrates that react with alpha- or beta-lithiated species is legion. The highly nucleophilic character of such organometallics provides for a reactivity and versatility approaching that of normal alkyl- and aryllithium (6) or Grignard reagents. Thus, any electrophilic center in a given substrate apt to react with a Grignard reagent is very likely to react with an alpha- or beta-lithiated species. A rather detailed discussion of the behavior of a broad spectrum of electrophilic substrates toward organolithium compounds in general has been presented. (6) The following survey is organized according to the nature of the bonds formed.

3.6.1.1. C-D/T Bonds

Deuteration (or tritiation) with D_2O (T_2O) or ROD proceeds readily and can be used as a diagnostic tool for the extent and site of lithiation, (23, 24) except for metalations with lithium dialkylamides, where D incorporation may be lower.

3.6.1.2. C- C Bonds

Formation of this particular bond is by far the most common, and a wide variety of substrates containing electrophilic functionalities of various oxidation states centered at carbon participate in this reaction. These include alkyl halides or sulfates, epoxides, aldehydes, ketones, carboxylate salts, carboxylic acid halides, anhydrides, esters, amides, nitriles, isocyanates, isothiocyanates, alicyclic and heterocyclic imines, as well as Michael acceptors, *e.g.*, the enol ethers of 1,3-diketones and β -amino nitroethylenes.

Alkylation of lithiated species proceeds best with *primary halides* or *sulfates*, in particular with methyl iodide (46, 95) or dimethyl sulfate. (274) Yields with secondary halides are often lower because of their decreased reactivity and/or tendency for elimination. Alkylations with *allylic* or *benzylic halides* are generally more successful with the somewhat less basic alpha-lithiated species, (20, 275) since deprotonation of these alkylating agents may occur, e.g., benzyl bromide leading to stilbene. (23, 112) Epoxides generally are well suited for the introduction of -CH₂CHROH. (116) Ethylene oxide works especially well in this regard. Aldehydes never fail to react with metalated species, and in fact can be used as a label to follow the progress of a lithiation reaction (p. 95). (23, 112) Ketones react readily. However, with enolizable ketones the yields are often considerably lower than those of the corresponding reactions with aldehydes. (79) Lower temperatures or a change to a less polar solvent can be advantageous on occasion. (23, 24, 276) Reaction with *carbon dioxide* produces carboxylic acids. This substrate has often been used, particularly in the older literature, to determine the site and the extent of lithiations. (1, 277) In view of the possible further reactions of lithium carboxylates, (197) particularly at room temperature, the yields of acid do not always reflect the degree of lithiation. On the other hand, lithium carboxylates can be useful substrates for the preparation of ketones. (177, 197)

Anhydrides and acid halides are with few exceptions poor substrates for the preparation of ketones. However, the direct conversion of an organolithium species into an ester is feasible under certain conditions by utilizing alkyl chloroformates. (141) Similarly, the use of dialkylcarbamoyl halides leads to tertiary carboxamides. (24) Generally, the use of *esters* to prepare ketones has the disadvantage of overreaction. (6) Under certain conditions, however, the desired products may be obtained in good yield. (270) The reaction of lithioorganics with *dimethylformamide* (234) or N-methylformanilide (278) is exceedingly clean and useful for the preparation of aldehydes. Reactions with other tertiary amides, particularly those with no acidic alpha hydrogens, lead to the corresponding ketones. (113) The electrophilicity of tertiary amides is, however, not always high enough to make this a general reaction. *Isocyanates* are highly reactive substrates that produce carboxamides in high yield. (279) The addition to *isothiocyanates* proceeds equally well. (46) The reaction with aldimines gives access to secondary amines. (102) Alpha deprotonation of the substrate, however, does limit the generality of this reaction. (209, 210) The facile addition to the *azomethine* linkage of pyridines, (99) pyrimidines, (280) isoquinolines, (99) quinolines, (83, 281) and quinoxalines (282) gives access to the correspondingly substituted heterocycles. The initial products are oxidized readily to the heteroaromatic systems. *Nitriles*, particularly aromatic nitriles, react well to give the corresponding imines, (254) which in turn can be hydrolyzed to the respective ketones. (283) It should be noted, however, that aliphatic nitriles have a tendency to be deprotonated. (112) The enol ethers of 1,3-diketones may undergo addition/elimination to provide access to beta-substituted enones. (284) In analogous fashion 2-(dialkylamino) nitroethylenes react with lithiated species to yield beta-substituted nitroolefins. (285)

3.6.1.3. C-N Bonds

The types of substrates capable of forming this bond are currently very limited. The direct introduction of an amino group is best achieved with methoxylamine, (286) although yields are usually only poor to moderate. A similar conversion is feasible with phenyl azide. (287)

3.6.1.4. C- O Bonds

Direct oxygenation, although not a general reaction, can be accomplished. (288) The desired conversion, however, is more readily achieved via boronic acids or borate esters as intermediates. (150) The use of alkyl peroxybenzoates permits the direct introduction of alkoxyl groups. (289)

3.6.1.5. C-S Bonds

The reaction of an organolithium reagent with a diaryl or dialkyl disulfide is quite clean and gives high yields. In fact, dimethyl disulfide can be used successfully as a label for following the extent of metalations (p. 95). (65, 134, 196) Elemental sulfur can be used to produce lithium thiolates which may

either be alkylated *in situ* (143) or worked up directly to yield the corresponding mercaptans. (275, 290) Sulfinic acids, on the other hand, are accessible by reaction of the lithiated precursors with sulfur dioxide. (112, 163)

3.6.1.6. C - Se Bonds

The reaction of lithioorganics with diselenides corresponds to their reaction with disulfides, and the analogous products are obtained. (291) The same products are also accessible by treatment with elemental selenium, followed by *in situ* alkylation. (292)

3.6.1.7. C - Halogen Bonds

Synthetic procedures for the preparation of all carbon - halogen bonds are available. For example, the use of perchloryl fluoride with lithioorganic species leads directly to the corresponding fluorinated compounds. (149) N-Chlorosuccinimide may be used to produce chloro derivatives. (204) Similar results are obtained with hexachloroethane. (293) Reaction of these organometallics with bromine, (98, 249) 1,2-dibromoalkanes, (293) or *p*-toluenesulfonyl bromide (134) produces the brominated derivatives. Treatment of lithioorganics with iodine is frequently a remarkably good reaction, often producing the corresponding iodides in high yield. (46, 149, 294) The use of diiodomethane leads to the same iodinated compounds. (293)

3.6.1.8. C- B Bonds

Reaction with trialkyl borates produces boronic acids in high yields after acid hydrolysis. (114) These in turn may serve as precursors for phenols (treatment with CuOAc), chlorides (CuCl), bromides (CuBr), or iodides (Cul). (2) Boronic acid amides are accessible directly by treatment of lithioorganic species with bis(dialkylamino)boron halides. (295)

3.6.1.9. C-P Bonds

Reaction of lithioorganics with phosphorus trihalides leads directly to trisubstituted phosphines. (296) Use of phosphorus oxychloride, on the other hand, permits formation of the analogous phosphine oxides directly. (296)

3.6.1.10. C- Si Bonds

Chlorosilanes are excellent substrates for producing tetrasubstituted silanes. (93, 297, 298)

3.6.1.11. C-Metal Bonds

Since the carbon-lithium bond of organolithium reagents is considerably more reactive than the carbon-metal bond of most other metals, unidirectional lithium-metal exchange can be readily achieved. These new organometallic reagents are generally considerably more stable. Moreover, their reactivity is of a softer nature, and therefore they may be utilized for reaction with substrates generally not suited for direct treatment with lithiated species, *e.g.*, acid halides or anhydrides, and allylic or benzylic halides. In the preparation of

the new organometallics the source of the less electropositive metal is almost always the halide, although other ligands can be used as well. The following list encompasses some examples representative of the numerous possibilities for forming new carbon - metal bonds. A more comprehensive account of their formation and reactivity is available. (6)

C -Fe Organoiron derivatives are accessible via Fe(CO)₅. (299)

C - Co These derivatives are available through the use of CoCl₂. (300)

C - Ni Organonickel compounds can be generated from Ni²⁺—phosphine complexes. (301)

C - Cu Organocopper derivatives or organolithio cuprates are readily available by treatment of lithiated species with cuprous halides. (105, 190) Their use in organic synthesis has been reviewed. (302) Reaction of organolithium reagents with cupric chloride produces coupled compounds. (144)

C - Pd PdCl₂ or its complexes with phosphines or sulfides are generally used to convert (C - Li) into (C - Pd) bonds. (303)

C - Ag The halides of Ag^+ or Ag^{2+} , when reacted with lithiated species, yield either organosilver derivatives (304) or lithioorganoargentates. (305)

C - Sn Organotin compounds are readily prepared from organotin halides of the general formula $R_m SnCl_n$, where m + n = 4, and R = organic residue. (306)

C - Pt Dialkyl sulfide complexes of $PtCl_2$ serve to form carbon-platinum complexes. (303)

C - Au The formation of carbon - gold bonds can be achieved by the use of Au⁺ complexes such as R_3P ·AuCl. (307)

C - Hg The reaction between lithiated species and mercuric chloride is very general, leading either to R_2 Hg or RHgCl, depending on the stoichiometry of the reaction. (262)

3.6.2. Ortho Interactions

The expected primary products from the reaction of an *ortho*-lithiated species with certain substrates are either not isolable or of only limited stability. The products actually obtained are either derived from a subsequent intramolecular nucleophilic attack of the newly introduced fragment on the electrophilic center of the *ortho*-directing group or, conversely, by a nucleophilic attack of the *ortho*-directing group on the electrophilic center of the new *ortho* substituent.

Thus, ortho-directing groups fall into one of two categories:

Electrophiles: CONHR, CSNHR, 2-oxazolines, 2-imidazolines, $CR(O^{-})NR_1R_2$ (after hydrolysis to a carbonyl group).

Nucleophiles: CONHR, CSNHR, 2-imidazolines, SO₂NHR, CH₂NHR,

CH₂OLi.

Among newly introduced *ortho* groups, the following are apt to undergo intramolecular interactions:

Electrophiles: CHO, CONR₁R₂, COR, CO₂H

Nucleophiles: CR_1R_2OH , $CH_2CR_1R_2OH$, C(R) = NH, CR_1R_2NHR .

In addition to the examples illustrated on p. 46 (compound **70**) and p. 55 (compounds **104–107**), the following examples are representative of these types of intramolecular interactions:

(Ref. 308)

4. Synthetic Utility

The multifaceted nature of heteroatom-facilitated lithiations, encompassing carbocyclic and heterocyclic aromatic as well as olefinic systems, is suggestive of broad synthetic applicability. Moreover, the high degree of regioselectivity and relative facility of this type of reaction, combined with the high reactivity of the new organolithium species toward a variety of electrophilic substrates, contribute to the attractiveness of heteroatom-facilitated lithiations as a synthetic tool. The purposes of the following discussion are, first, to underscore and pinpoint the distinct advantages of directed lithiations over other methods in the substitution of various aromatic systems; second, to put in perspective the role of lithiations in the development of modern synthetic methodology, in particular, of acyl anion equivalents; and third, to give a general idea of the synthetic potential of selected directing groups.

4.1. Carbocyclic Aromatic Systems

The most generally applicable reaction in synthetic benzenoid chemistry is electrophilic substitution. In monosubstituted benzenes this type of reaction produces either a *mixture* of *ortho* and *para* isomers or *meta* isomers, depending on the inductive and resonance effects of the original substituent. (309, 310) Whereas only certain ortho functionalizations can be achieved via Claisen-type rearrangements, (311) heteroatom-facilitated metalation is the only regioselective and direct, hence practical, synthetic procedure for making accessible almost any ortho-substituted benzene derivative. This method is capable of producing novel functionalities ortho to phenolic ethers, benzylamines, and more importantly, carboxylic acids and their derivatives, ketones, sulfones, and sulfonamides. The latter grouping is significant insofar as electrophilic substitution ortho to strongly electron-withdrawing groups is essentially impossible. The available alternatives, *i.e.*, nucleophilic substitution of either the appropriate diazonium salts or strongly activated leaving groups, (312) are limited by the availability of the respective starting materials as well as by the nature of the nucleophiles.

For 1,3-disubstituted benzenes electrophilic reactions generally lead to a variety of products depending on the character of the substituents. In contrast, with few exceptions (p. 15) heteroatom-facilitated lithiations permit the regioselective preparation of 1,2,3-trisubstituted compounds. For example, whereas 1,3-dimethoxybenzene undergoes electrophilic substitution in the 4 position, (313) lithiation occurs exclusively between the ether functions. (314) Alternatively, 1,2,3-trisubstituted benzenes are readily available by lithiating 1,2-disubstituted compounds, metalation occurring *ortho* to the more effective directing group (p. 15). In turn the trisubstituted derivatives can be utilized to prepare 1,2,3,4-tetrasubstituted compounds, *etc.*

For 1,4-disubstituted benzenes, electrophilic substitution may still occur in either of the two *ortho* positions unless the character of the respective substituents is sufficiently different. This is again a situation where *ortho* lithiation provides a viable alternative. For example, *p*-chlorotoluene is acylated under Friedel-Crafts conditions by benzoyl chloride in almost equal amounts at the 2 (56%) and 3 positions (44%), making this a preparatively impractical reaction. (23) In sharp constrast, *p*-chloro-N,N-dimethylbenzylamine is lithiated regiospecifically and almost quantitatively in the 2 position. (23, 24, 45) Electrophilic substitution of *p*-methylanisole occurs preferentially adjacent to the methoxyl group, (315) as does lithiation and subsequent functionalization of *p*-methoxy-N,N-dimethylbenzylamine take place regioselectively *ortho* to the aminoalkyl group, (19) which in turn can be converted to a methyl group, thus leading to a 3-substituted 4-methylanisole.

Lithiation of naphthalene systems is also feasible, the most useful aspect probably being the accessibility of 1,8-disubstituted derivatives, whose availability by other routes requires more elaborate synthetic sequences. (316) Metalation in the *peri* (8) position of 1-substituted naphthalenes is particularly favored with 1-anilinonaphthalene, 181 1-[N,N-(dimethylamino)methyl]naphthalene, (191) and under special conditions, 1-methoxynaphthalene. (192)

It should be noted that certain lithiated species obtained by heteroatom-facilitated metalation can also be prepared either by metal-halogen exchange of the corresponding bromo derivatives (317-319) or by destannylation with *n*-butyllithium. (320-322) Although the direct lithiation is usually simpler, more economical, and far more versatile, there are substrates that are incompatible with alkyllithiums even at -78° (p. 16) or whose *ortho*-lithiated species self-condense at this temperature. In these instances metal-halogen exchange can occasionally be utilized to good advantage because of the extremely low temperatures at which the exchange can be effected, *e.g.*, -100° . (323, 324)

Ortho metalations with metals other than lithium have been studied extensively and used for synthetic purposes. (203, 325-328) However, the economy and high reactivity of lithioorganics as well as their lack of toxicity (compare thallium (326) or mercury (329)), clearly make heteroatom-facilitated lithiations a more generally acceptable and practical method.

4.2. Heterocyclic Aromatic Systems

The uses of alpha lithiation in heteroaromatic chemistry are legion. It would be redundant to reelaborate the metalation of every heterocyclic system, as much of the utility of this methodology is covered implicitly in the appropriate sections (pp. 17–42). However, a few particularly noteworthy aspects should be emphasized.

For most five-membered heterocycles with one, two, or three heteroatoms, the two-step sequence of lithiation followed by reaction with an electrophile gives access to regioselectively substituted derivatives, many of which differ in the position of the newly introduced functionality from those obtained by direct electrophilic attack on the heterocycle. For example, both pyrazoles (330) and isothiazoles (331) undergo electrophilic substitution on carbon at their respective 4 positions, whereas they are lithiated at position 5 (pp. 23 and 39). In addition, imidazoles, (332) oxazoles, (333) and thiazoles (334) suffer electrophilic attack at either the 5 or a combination of both the 4 and 5 positions, whereas metalation occurs exclusively between the two heteroatoms (pp. 24, 31, and 39). Although few reports exist on the electrophilic substitution of 1,2,3-triazoles, there is evidence that the reaction takes place at the 4 position, (335) whereas lithiation is known to occur at position 5 (p. 26).

Benzimidazoles (332) and benzothiazoles (334) present a different picture in that they undergo electrophilic substitution in the benzenoid portion of the molecule, whereas metalation again occurs between the two heteroatoms (pp. 24 and 39). Another noteworthy example is that of indoles, whose behavior toward electrophiles parallels that of simple enamines. (336) By contrast, lithiation of N-substituted indoles occurs regioselectively at position 2 (p. 22).

4.3. Heterosubstituted Olefins-Acyl Anion Equivalents

The principle of reversing the polarity of synthons has received considerable attention during the past decade. (337, 338) In particular, it was the development of acyl anion equivalents which opened up numerous new possibilities in synthetic organic chemistry. Although metalated dithianes were first introduced to the armamentarium of acyl anion equivalents, (339) the discovery of the alpha lithiation of ethyl vinyl ether (103) considerably broadened the scope of this synthetic tool. Additionally, the facile metalation of other alkyl vinyl ethers, alkyl or aryl vinyl sulfides, and allenic ethers further extended the accessibility of acyl anion equivalents from commercially or readily available materials.

The highly nucleophilic character of these lithiated species permits reactions with a wide variety of electrophiles. Characteristically, like other organolithium reagents these acyl anion equivalents add 1,2 to most α , β -unsaturated systems. Conjugate addition, however, can be achieved via conversion into the corresponding organolithium cuprates, a topic covered in an earlier volume of this series. (302) Although this aspect has not been exploited to any great extent with the alpha- and beta-lithiated species discussed in this chapter, the

possibility nevertheless exists. (105) A representative list of these acyl anion equivalents follows:

4.4. Synthetic Potential of Ortho-Directing Groups

Of all the *ortho*-directing groups two types stand out as being particularly useful for subsequent elaborations, *i.e.*, dialkylaminoalkyls and carboxylic acid derivatives. The N,N-dialkylaminoalkyl functionality is an exceedingly useful synthetic handle, since it can readily be converted to either a reactive halide or quaternary salt suitable for further transformations. Alternatively, the basic functionality can be hydrogenolyzed to a simple alkyl substituent.

Of the carboxylic acid derivatives only the secondary amides, thioamides, and 2-oxazolines are noteworthy for their synthetic potential. Among the secondary amides the N-*t*-butylcarboxamides offer the most versatility for further transformations, as they can be cleaved either to primary amides with anhydrous acid or to nitriles with acidic dehydrating agents, (24) as well as completely hydrolyzed to carboxylic acids. The particular asset characteristic of thioamides is their potential for mild carbon - carbon bond formation via S-alkylation followed by sulfur extrusion. (340) The 2-oxazolines readily lend

themselves to transfunctionalization, as they are convertible not only to aldehydes or ketones (341-343) but also to acids and esters. (317)

Other beta-directing groups with some synthetic potential are masked carbonyl functionalities, in particular α -alkoxidoaralkylamines and the acetals and ketals of aldehydes and ketones. Upon hydrolysis they collapse to the respective carbonyl groups that are well suited to further synthetic elaboration. The α -alkoxidoaralkylamines, generated by the addition of an organometallic to the carbonyl group of a tertiary amide, appear to have a reasonably general applicability, as they may serve to functionalize the *ortho* or beta positions of both carbocyclic and heterocyclic aromatic systems (p. 52). In contrast, the directing effect exerted by acetals and ketals is modest, restricting their synthetic utility to substrates in which lithiation is facilitated by the activating effect of an additional heteroatom (situated in a 1,3-relationship with respect to the acetal); the masked 3-acylated five-membered heterocycles (p. 66) are an example.

As alluded to earlier (p. 85), the intramolecular interaction of *ortho* directors or their transformation products with the newly introduced functionality can give access to numerous bicyclic systems. Such interactions are illustrated on p. 37 (compounds 54 and 55) and pp. 85–86. Another particularly cogent example is the synthesis of 4-phenyl-1H-2,3-benzoxazine from N,N-dimethylbenzylamine in a four-step sequence. (344) This conversion not only demonstrates the elaboration of bicyclic systems, but also underscores the concept of transfunctionalization of the original directing group.

5. Experimental Considerations

5.1. The Lithiating Agent

Numerous organolithium reagents are now available from commercial sources, generally as filtered solutions packed in bottles capped with serum stoppers or, for larger quantities, in metal cylinders. If n-butyllithium is not available, it can be conveniently prepared from 1-chloro- or 1-bromobutane and lithium metal following detailed published directions. (1, 4, 6) The *n*-butyllithium/TMEDA complex in hexane (225) or ether (19) and lithium diisopropylamide (p. 98) are generally prepared in situ. The quality of fresh commercial solutions of *n*-butyllithium in hexane, the most commonly used lithiating agent, is generally good, and the indicated assay is accurate to within a ±5% range. Older preparations, particularly those with considerable sedimentation, or reagents prepared *in situ* should be assayed according to methods reviewed previously. (4, 8, 345, 346) We favor the direct titration with s-butyl alcohol employing the charge-transfer complex formed between the alkyllithium and 2,2['] -biquinoline. (347) In hydrocarbon solvents most of the commonly used lithiating agents, in particular *n*-butyllithium, can be stored at room temperature under an inert atmosphere (nitrogen or argon) for several months. Storage at lower temperatures is not essential and may even prove to be disadvantageous, since the titers may vary because of crystallization or the possible condensation of moisture.

5.2. The Solvent

The most commonly used solvents for lithiation reactions are diethyl ether, tetrahydrofuran, and hexane. Other ethers, such as dimethoxyethane, (348) and hydrocarbons, such as cyclohexane (17) or benzene, (24) are used occasionally. As with other reactions involving organometallic reagents, all solvents should be dry.

One limitation in the use of ethereal solvents is their reaction with the lithiating agent itself. The rather rapid deprotonation of tetrahydrofuran by *n*-butyllithium leads to butane, ethylene, and the lithium enolate of acetaldehyde. (349-352) Even diethyl ether is slowly decomposed by *n*-butyllithium, (350, 353) the half-life in this solvent being 153 hours at 25°. (354) A compilation of the stability of various lithiating agents in ethereal solvents is available. (4, 6, 8)

5.3. Selection of Experimental Conditions

To determine the appropriate experimental conditions for an unfamiliar substrate, several factors must be considered. These include the number and types (alpha or beta) of potential sites of metalation, compatibility of additional functional groups with the lithiating agent, solubility of the substrate, and solvent dependence of any subsequent reactions.

If there is a single lithiatable site, the choice of conditions, *i.e.*, metalating agent, solvent, temperature, etc., is fairly straightforward. A suitable starting point may be a search for relevant examples such as those compiled in the tabular survey. However, it should be noted that many of the older procedures have to be viewed in the light of current experimental and theoretical knowledge. For example, the more reactive *n*-butyllithium/TMEDA in ether or hexane (p. 21) may be used to considerable advantage for rate enhancement of some of the more sluggish ortho lithiations, notably of those substrates activated by electron-withdrawing groups with moderate coordination potential (p. 44). With few exceptions, e.g., pyrroles, indoles, and enamines, most other ortho and alpha lithiations are sufficiently rapid with *n*-butyllithium in ether to obviate the need for additives or accelerators. Still, if a lower temperature or a shorter duration is desirable, the n-butyllithium/TMEDA complex can potentially be advantageous. On occasion *n*-butyllithium in tetrahydrofuran can have a similar salutary effect on both alpha and *ortho* metalations. However, caution should be exercised when considering the use of this potential expedient because of the indicated instability of this combination of solvent and metalating agent.

Any solvent choice should also take into consideration the solubility characteristics of the substrate. It should be noted, however, that on occasion intractable starting materials dissolve on metalation. (23, 24) Alternatively, soluble substrates with acidic protons, *e.g.*, secondary arylcarboxamides, may precipitate on initial deprotonation and redissolve on lithiation. (23, 24) The nature of the solvent also affects the reactivity of the metalated species. For instance, it appears that alkylations are best performed in tetrahydrofuran. The use of ether or hexane may also be successful, however, if prior to the addition of the alkylating agent, an equimolecular amount of hexamethylphosphoramide is added to the lithiated species. On the other hand, tetrahydrofuran is often the least suitable solvent for reactions of metalated species with enolizable substrates such as ketones.

For those substrates that contain multiple lithiatable sites, the selection of experimental conditions becomes more exacting, since the success or failure of the desired metalation depends on competitive rates. If the competition is between a "coordination-only" group and either an alpha activator or an electron-withdrawing group (other than with pronounced coordination potential) (p. 44), the use of *n*-butyllithium/TMEDA in ether or hexane and in many instances *n*-butyllithium/tetrahydrofuran promotes lithiation adjacent to the inductively acidifying functionality, thus leading to the thermodynamic product. For this purpose lithium dialkylamides can also be used if the substrate site is sufficiently acidic ($pK_a < 30$). They are especially suitable for substrates containing functional groups susceptible to either nucleophilic attack or metal–halogen exchange. In contrast, utilization of a coordinatively

unsaturated, Lewis-acid-type metalating agent, such as *n*-butyllithium in ether or hexane, should favor lithiation *ortho* or beta to the more effective coordinating group, hence yielding the kinetic product. If there are *several* sites available *ortho* or beta to the dominant directing group, the position actually metalated is the one rendered most acidic by the inductive effect of additional substituents (for examples see compounds **101**, p. 53, and **148**, p. 66). It should be noted that low temperatures also favor kinetic products.

Analysis of the competition between other combinations of functionalities is no longer simple. Therefore the factors governing the facilitating ability of each functional group should be evaluated in the light of the discussion in preceding sections (pp. 7 and 77) before the choice of appropriate experimental conditions is made. Recent studies have been addressed to the problem of predicting metalation sites from ¹³C—H bond couplings. (355)

5.4. Typical Procedure for an Exploratory Lithiation

The following general experimental procedure may serve as a guideline for the lithiation of a novel substrate. A three-necked, round-bottomed flask equipped with thermometer, serum stopper and dropping funnel, nitrogen inlet, and a magnetic stirring bar is purged with a stream of dry nitrogen. It is then charged with a solution of the substrate in the appropriate dry solvent, normally in a concentration of 3–10 mL/mmol. The solution of the lithiating agent is placed in the dropping funnel, usually 1.1 molar equivalents if a monolithio species is to be generated. The constant stream of nitrogen may then be replaced by a balloon filled with nitrogen, thus keeping the reaction system under a positive nitrogen pressure. In this manner the accumulation of traces of oxygen and moisture carried with the nitrogen can be avoided. Alternatively, a mercury bubbler system may be used. The solution is adjusted to the desired temperature. The metalating agent is then added from the dropping funnel. To monitor the progress of the metalation it is best to withdraw aliquots by means of a syringe and to quench these under an atmosphere of nitrogen at 0° with any of the following substrates: methyl alcohol-d, deuterium oxide, dimethyl disulfide, or acetaldehyde. If the proton to be removed is easily detectable in the nmr spectrum, both qualitatively and quantitatively, CH_3OD or D_2O are the reactants of choice, since the amount of deuterated product can be assayed (except with lithium amides as metalating agents; see p. 80). In other cases the use of acetaldehyde or dimethyl disulfide is advisable, particularly if the new methyl signals of the product are well defined and recognizable in the nmr spectrum. An additional advantage of all these "label reactants" is their relative volatility as well as the volatility of the addition products with the lithiating agent (e.g., n-butyllithium) itself. Once the degree of lithiation reaches a satisfactory level, the actual reactant can be added. The procedure of the aqueous workup is generally determined by the nature of the expected products.

6. Experimental Procedures

Unless indicated otherwise, the following experiments were carried out in a three-necked flask equipped with a magnetic stirring bar, dropping funnel, thermometer, and nitrogen inlet.

6.1.1.1. 3-(p-Chlorophenyl)-1-(2-tetrahydropyranyl)pyrazole-5-methanol [Typical Alpha Lithiation of a 5-Membered Nitrogen Heterocycle (Pyrazole) with n-Butyllithium in Tetrahydrofuran] (23)

A solution of 5.25 g (20 mmol) of

3-(*p*-chlorophenyl)-1-(2-tetrahydropyranyl)pyrazole in 100 mL of tetrahydrofuran was cooled under an atmosphere of nitrogen in an ice bath, and 15 mL (24 mmol) of a 1.6 *M* solution of *n*-butyllithium in hexane was added dropwise. After the addition the mixture was stirred at 0–5° for 85 minutes. Then 1.6 g of powdered and dried (at 100°/0.1 mm for 1 hour) paraformaldehyde was added in one portion, and the reaction mixture was allowed to stir at room temperature for 16 hours. The reaction mixture was diluted with ether and washed with basic brine. The organic layer was dried over sodium sulfate and evaporated under reduced pressure. The residue of 5.9 g was crystallized from ether–hexane to yield 4.2 g (72.5%) of product, mp 95–97°; ir (Nujol) 3150–3330 cm⁻¹; nmr (CDCl₃) δ 1.4–2.5 (m, 6*H*), 3.2–4.2 (m, 3*H*, 1 exch), 4.65 (s, 2*H*), 5.48 (dd, 1*H*), 6.48 (s, 1*H*), and 7.2–7.8 (AB quartet, 4*H*).

6.1.1.2. 3-O-Methyl-17 α -(α -methoxyvinyl)estra-3,17 β -diol (Preparation of α -Methoxyvinyllithium via Alpha Lithiation with t-Butyllithium in Tetrahydrofuran at Low Temperatures) (104, 356)

To a solution of 1.1 g (19.2 mmol) of methyl vinyl ether in dry tetrahydrofuran, cooled to -65° , was added under an atmosphere of nitrogen 7.5 mL (12 mmol) of a 1.6 *M* solution of *t*-butyllithium in pentane. After removal of the cooling bath, the yellow precipitate redissolved and the solution became colorless between -5 and 0°. This solution, now containing 12 mmol of α -methoxyvinyllithium, was cooled again to -60° . Then 1.15 g (4 mmol) of estrone methyl ether in 20 mL of dry tetrahydrofuran was added, and the mixture was allowed to warm to 0° over a period of 0.5 hour. The mixture was then quenched with aqueous ammonium chloride and extracted with ether. The organic layer was dried over anhydrous magnesium sulfate, and most of the ether was removed under reduced pressure. Addition of 50 mL of hexane induced crystallization of the product, which was collected in 74% yield (1.02 g), mp 144–146°; ir (CCl₄) 3650, 1665, and 1620 cm⁻¹; nmr (CCl₄) δ 0.90 (s, 3*H*), 1.0–2.4 and 2.6–3.0 (m, 16*H*), 3.54 (s, 3*H*), 3.70 (s, 3*H*), 4.02 and 4.15 (AB quartet, J = 2.5 Hz, 2*H*), 6.5–6.8 and 7.05–7.3 (m, 3*H*).

6.1.1.3. *a*, *a*-Diphenyl-2-furylmethanol (Alpha Lithiation of Furan with

n-Butyllithium in Tetrahydrofuran or Ether) (23)

To an ice-cooled solution of 4.08 g (60 mmol) of furan in 60 mL of dry tetrahydrofuran was added dropwise 34.4 mL (55 mmol) of a 1:6 *M* solution of *n*-butyllithium in hexane under an atmosphere of nitrogen. After the addition the solution was allowed to stir at ice-bath temperature for 3 hours. Then a solution of 9.1 g of benzophenone (50 mmol) in 30 mL of dry tetrahydrofuran was added at a rapid rate, and the reaction mixture was stirred at room temperature for 2 hours. The mixture was poured onto brine, the aqueous layer was reextracted with ether, and the organic phases were dried over sodium sulfate. After evaporation of the solvents the residue of 12.8 g was crystallized from ether–hexane to give a total of 12.45 g of analytically pure product (98.8% based on benzophenone), mp 86–87°; ir (Nujol) 3380 cm⁻¹; nmr (CDCl₃) δ 3.5 (s, 1*H*), 5.9 (d, *J* = 3 Hz, 1*H*), 6.25 (dd, *J* = 3 and 2 Hz, 1*H*), and 7–7.7 (m, 11*H*).

Alternatively, the reaction can be carried out in ether $(-20^{\circ} \text{ during the addition of } n$ -butyllithium, then reflux for 4 hours) to give the same product in 98% yield. (112)

6.1.1.4. 1-Hydroxycyclohexanecarboxylic Acid Dimethylamide (Alpha Lithiation of Dimethylformamide with Lithium Diisopropylamide and Reaction with an Enolizable Ketone) (23, 78)

A solution of 2.92 g (40 mmol) of dimethylformamide and 3.92 g (40 mmol) of cyclohexanone in 100 mL of dry ether-tetrahydrofuran (4:1) was cooled under an atmosphere of nitrogen to -78° . In a separate three-necked flask a solution of lithium diisopropylamide (44 mmol) [prepared from 6.16 mL (44 mmol) of diisopropylamine in 17 mL of ether and 27.5 mL of a 1.6 M solution of *n*-butyllithium in hexane (44 mmol)] was also precooled to –70° under nitrogen. The solution of lithium diisopropylamide was then withdrawn by means of a syringe via a serum stopper and transferred, again through a serum stopper, into the flask containing the substrates. The reaction mixture was then kept at -70° for 6 hours. Subsequently, the temperature was raised to 20°, the reaction was guenched with an aqueous solution of ammonium chloride, and the layers were separated. After reextraction of the aqueous layer with ether and washing of the organic layers with brine, the ethereal solution of the product was dried over sodium sulfate and evaporated. The oily residue, containing both product and unreacted (because of enolization) cyclohexanone, was kept under high vacuum at 70° to remove the unreacted ketone. The solidified colorless residue was recrystallized from cyclohexane to yield 3.1 g (45.5%) of 1-hydroxycyclohexanecarboxylic acid dimethylamide as colorless needles, mp 105°; ir (Nujol) 3340 and 1600 cm⁻¹; nmr (CDCl₃) δ1.2–2.1 (m, 10*H*), 3.14 (s, 6*H*), and 4.24 (s, 1*H*). A similar procedure gave a higher yield (62%). (78)

6.2. 3-Hydroxy-2-(phenylthio)-1-octene (Alpha Lithiation of Phenyl Vinyl Sulfide in Tetrahydrofuran) (124, 126)

6.2.1.1. A. With Lithium Diisopropylamide

A solution of freshly distilled phenyl vinyl sulfide (1.36 g, 10 mmol) in 10 mL of dry tetrahydrofuran was added dropwise and under nitrogen to a cold (–60°) solution of lithium diisopropylamide (10 mL) [prepared from diisopropylamine(1.01 g) and *n*-butyllithium (7.69 mL of a 1.3 *M* solution in hexane)] and hexamethylphosphoramide (3 mL). After this solution was stirred at –60° for 30 minutes, 1.0 g (10 mmol) of *n*-hexanal in 5 mL of dry tetrahydrofuran was added dropwise. After an additional 30 minutes the cooling bath was removed, and the mixture was allowed to reach room temperature. The reaction mixture was then poured into water and extracted with two 10-mL portions of ether. The ethereal extracts were combined and dried over anhydrous sodium sulfate. After evaporation of the solvent the crude product was obtained as an oil, which was distilled to give 1.81 g (76%) of 3-hydroxy-2-(phenylthio)-1-octene, bp 120° (0.1 mm); nmr (CDCl₃) δ 1.4 (m, 12*H*), 4.2 (t, *J* = 6 Hz, 1*H*), 4.95 (s, 1*H*), 5.5 (m, 1*H*), and 7.4 (m, 5*H*).

6.2.1.2. B. With n-Butyllithium/TMEDA

Procedure A was repeated by adding the phenyl vinyl sulfide to a cold solution (-70°) of TMEDA (1.16 g, 10 mmol) and *n*-butyllithium (7.69 mL of a 1.3 *M* solution in hexane, 10 mmol) in 30 mL of dry tetrahydrofuran. The yield of distilled product was 2.0 g (84%).

6.2.1.3. 2-Thiophenethiol

The preparation of this compound in 65–70% yield by alpha lithiation of thiophene and reaction with elemental sulfur is described in *Organic Syntheses*. (357)

6.2.1.4. Benzo[b]thiophen-2(3 H)-one (Alpha Lithiation of Benzothiophene with n-Butyllithium in Ether and Reaction with Trialkylborate–Hydrogen Peroxide) (150)

To a solution of 26.8 g (0.2 mol) of benzothiophene in 100 mL of anhydrous ether was added 130 mL of a 1.6 *M* solution of *n*-butyllithium in hexane (0.208 mol). The mixture was refluxed for 45 minutes, and the resulting solution of 2-lithiobenzothiophene was cooled in a dry ice–acetone bath and treated with 64.5 g (0.28 mol) of tri-*n*-butyl borate. The resulting gelatinous precipitate was hydrolyzed with 200 mL of 1 *N* hydrochloric acid, initially at 0°, then for 1 hour at room temperature. The two layers were separated, and the aqueous phase was reextracted with ether. The combined organic layers were then extracted with 200 mL of 1 *N* sodium hydroxide, and the basic aqueous layer was backwashed with ether. Acidification of the aqueous layer with ice-cold 3 *N* hydrochloric acid gave a pink-yellow, odorous precipitate of crude boronic acid, which was filtered and washed with water. The crude boronic acid was dissolved in a small volume of ether with stirring and treated with

96 mL of 10% hydrogen peroxide containing 2 mL of saturated aqueous sodium carbonate solution. The resulting mixture was refluxed for 1 hour and then stirred at room temperature. The layers were separated, and the aqueous phase was reextracted with ether. The combined organic phase was washed with water until the ferrous ion test no longer indicated the presence of hydrogen peroxide. Finally the ether was washed with brine, dried over magnesium sulfate, and evaporated under vacuum to give 21.7 g (72%) of crystalline product, mp 32–34°. Recrystallization from hot aqueous methanol and cooling to -20° gave pale-yellow needles, mp 34–35°; ir (CCl₄) 1723, 1595, and 1460 cm⁻¹; nmr (CDCl₃) δ 3.92 (s, 2*H*), and 7.24 (m, 4*H*).

6.2.1.5. 2-Chloro-3,3-diphenylacrylic acid (Alpha Lithiation of a Chloroalkene with n-Butyllithium in Tetrahydrofuran) (358)

To a solution of 6.45 g (30 mmol) of 1-chloro-2,2-diphenylethylene in 50 mL of tetrahydrofuran, cooled to -71° , was added over a 1-hour period 23 mL of a 1.32 *M* solution of *n*-butyllithium in ether (30 mmol). At the onset of the addition the color of the reaction mixture was pink, which then changed slowly to yellow and finally to a light brown. The mixture was poured onto solid powdered carbon dioxide which had been covered with dry ether. After the addition of water the ether-tetrahydrofuran mixture was removed on the rotary evaporator. The basic aqueous layer was then extracted successively with ether, acidified with an excess of dilute sulfuric acid, and extracted again with ether. The combined layer was dried over calcium chloride, filtered, and evaporated. The crude acid so obtained (6.43 g, 83%, mp 130–133°) was recrystallized from cyclohexane to give 6.20 g of 2-chloro-3,3-diphenylacrylic acid, mp 136°.

Evaporation of the neutral layer gave 0.8 g of crystals (mp 45–47°) consisting of a mixture of starting material (240 mg, 3.7%) and diphenylacetylene (560 mg, 10%).

An analogous lithiation in ether as solvent resulted in the recovery (99%) of starting material. (358)

6.2.1.6. [6-(Dimethylamino)-m-tolyl]diphenylmethanol

The preparation of this compound in 49–57% yield by *ortho* lithiation of N,N-dimethyl-*p*-toluidine with *n*-butyllithium–TMEDA is described in *Organic Syntheses*. (359)

6.2.1.7. 3-Chloro-6-[(dimethylamino)methyl]-2¢-fluorobenzophenone (Ortho Lithiation of a Tertiary Benzylamine with n-Butyllithium in Ether) (23) A solution of 119 g (0.7 mol) of p-chloro-N,N-dimethylbenzylamine in 1.7 g/L of anhydrous ether was cooled to 2–4° in an ice bath. Then 480 mL (0.77 mol) of a 1.6 *M* solution of *n*-butyllithium in hexane was added at such a rate that the temperature did not exceed 4°. The reaction mixture was allowed to stir under a positive nitrogen pressure (balloon) at ice-bath temperature for 12 hours. Subsequently a solution of 85 g (0.7 mol) of *o*-fluorobenzonitrile in 350 mL of ether was added, and the mixture was stirred at 25° for an additional 12 hours. After the flask was again cooled in an ice bath, 1.3 g/L of 5 *N* hydrochloric acid was added, carefully at the beginning, and the biphasic mixture was then refluxed for 40 minutes. The two layers were separated in a separatory funnel, the ethereal layer was reextracted with 200 mL of dilute hydrochloric acid, and the aqueous layers were combined. After the addition of ice, the acidic layer was brought to pH 11 with 30% aqueous sodium hydroxide solution. The oily product was then extracted into methylene chloride (two extractions), and the organic layer was separated and dried over sodium sulfate. The solvent was removed under vacuum, and the residue was crystallized from hexane (600 mL)/ether (50 mL) to give a total of 160.5 g (79%) (three crops) of analytically pure product, mp 89°; ir (Nujol) 1653 cm⁻¹; nmr (CDCl₃) δ 1.97 (s, 6*H*), 2.36 (s, 2*H*), and 7.0–7.8 (m, 7*H*).

6.2.1.8. 2-Acetyl-5-chlorobenzaldehyde (One-Pot Transformation of a Tertiary Benzamide into an Ortho-Functionalized Acetophenone by Addition of Methyllithium, Ortho Metalation with n-Butyllithium in Tetrahydrofuran, and Reaction with Dimethylformamide) (196)

A solution of 10 g (53.6 mmol) of *p*-chloro-N,N-dimethylbenzamide in 100 mL of dry tetrahydrofuran was cooled to -78° . Then 31.2 mL of a 2.0 *M* solution of methyllithium in ether (59 mmol) was added dropwise. After the mixture was stirred at that temperature for 1 hour, 368 mL (59 mmol) of a 1.6 *M* solution of *n*-butyllithium in hexane was added dropwise. The mixture was then stirred at 20–25° for 16 hours. The solution of the dilithio species thus formed was cooled in an ice bath and allowed to react with a solution of 4.4 g (59 mmol) of dimethylformamide in 20 mL of dry tetrahydrofuran. The reaction mixture was stirred at 0° for 0.5 hours, and then the temperature was raised to 25° and maintained for 1 hour. The mixture was quenched with 50 mL of 3 N hydrochloric acid and extracted with ether. The combined extracts were washed with water and dried over sodium sulfate. After evaporation of the solvents under vacuum the crude orange oil (6.5 g) was distilled [165–170° (0.7 mm)] to give 5.6 g (56%) of the product as a colorless oil; ir (film) 1688 cm⁻¹; nmr (CDCl₃) $\overline{010.1}$ (s, 1*H*), 7.3–8.0 (m, 3*H*), and 2.68 (s, 3*H*).

6.2.1.9. 2-t-Butyl-3-hydroxyphthalimidine (Ortho Lithiation of a Secondary Benzamide in Tetrahydrofuran with 2 Equivalents of n-Butyllithium) (23, 24) A solution of 5.32 g (30 mmol) of N-t-butylbenzamide in 100 mL of dry tetrahydrofuran was cooled in an ice bath under an atmosphere of nitrogen. To this solution was added 41.3 mL (66 mmol) of a 1.6 *M* solution of *n*-butyllithium in hexane at such a rate that the internal temperature did not exceed 10°. The generation of the monoanion is markedly exothermic. After the addition the mixture was allowed to stir at ice-bath temperature for 4 hours. The generation of the desired dianion is evident by the formation of a thick white precipitate. Subsequently, 2.9 g (3.1 mL, 40 mmol) of dry dimethylformamide was added neat, and the mixture was allowed to stir for 2.5 hours at room temperature. The reaction was quenched with ice and excess 2 *N* hydrochloric acid, and the aqueous phase was reextracted with ether. The organic layers were washed with brine and dried over anhydrous sodium sulfate. The thick, viscous oil obtained after evaporation of the solvent was dissolved in hot hexane, whereupon the product crystallized to give 5.7 g, mp 105–125°. Recrystallization from hot toluene gave 5.05 g (82%) of pure 2-*t*-butyl-3-hydroxyphthalimidine, mp 132–135°; ir (Nujol) 3205 and 1655 cm⁻¹; nmr (DMSO-d₆) δ 1.58 (s, 9*H*), 6.0 (d, *J* = 10 Hz, 1*H*), 6.34 (d, *J* = 10 Hz, 1*H* exch), and 7.53 (s, 4*H*).

6.2.1.10. 2-[p-Methoxyphenyl-2-(phenylthio)]-4,4-dimethyl-2-oxazoline (Ortho Lithiation of an Aryloxazoline Using n-Butyllithium in Ether and Reaction with a Diaryl Disulfide) (46)

A solution of 3.07 g (15 mmol) of

2-(*p*-methoxyphenyl)-4,4-dimethyl-2-oxazoline in 65 mL of dry ether was cooled in an ice bath under an atmosphere of nitrogen. Then 10.3 mL (16.5 mmol) of a 1.6 *M* solution of *n*-butyllithium in hexane was added dropwise, and the mixture was stirred at this temperature for 4 hours. A solution of 3.65 g (16.5 mmol) of diphenyl disulfide in 30 mL of dry ether was added, and the reaction mixture was stirred for 16 hours at ambient temperature. The reaction was quenched with ice water, and the ethereal layer was washed with dilute sodium hydroxide solution to separate the thiophenol and finally with brine. The organic layer was dried over sodium sulfate and evaporated to produce a residue of 5.6 g. The thioether was crystallized from ether–hexane to give 4.2 g (89%), mp 51–53°; ir (Nujol) 1630 and 1590 cm⁻¹; nmr (CDCl₃) δ 1.4 (s, 6*H*), 3.55 (s, 3*H*), 4.02 (s, 2*H*), 6.35 (d, *J* = 3 Hz, 1*H*), 6.52 (dd, *J* = 8 and 2 Hz, 1*H*), 7.2–7.7 (m, 5*H*), and 7.75 (d, *J* = 8 Hz, 1*H*).

6.2.1.11. 3-Chloro-2-(methoxymethoxy)benzaldehyde (Ortho Lithiation of a Protected Phenol with n-Butyllithium/TMEDA in Hexane and Reaction with Dimethylformamide) (234)

To a solution of 261 mL of 1.92 *M n*-butyllithium in hexane (0.5 mol) was added 86.3 g (0.5 mol) of TMEDA. After the mixture had cooled in an ice bath, 86.3 g (0.5 mol) of *o*-chlorophenyl methoxymethyl ether was added during 30 minutes, with the temperature maintained between 0–5°. The mixture was stirred for an additional 30 minutes at this temperature. The yellow slurry was transferred under an atmosphere of nitrogen through a polyethylene tube into an addition funnel, from which it was added over a 25-minute period to a solution of 43.8 g (0.6 mol) of dimethylformamide in 470 mL of xylene. During the addition the reaction mixture was stirred vigorously, and the temperature was maintained at 0–5° by external cooling. Stirring at this temperature was continued for an additional hour, after which the reaction mixture was transferred slowly through a polyethylene tube into a stirred mixture of 37% hydrochloric acid (190 mL) and crushed ice (900 g). The temperature was watched carefully and not permitted to rise above 5°. Stirring at 0–5° was continued for 20 minutes after the transfer. The aqueous phase was then separated and discarded, and the organic layer was washed with cold dilute hydrochloric acid (1 *N*, 200 mL) and with brine (200 mL). The organic layer was stirred for 20 minutes with a solution of sodium bisulfite (52 g, 0.5 mol) in water (120 mL) mixed with ice (150 g). The aqueous solution was separated and kept cold. This extraction scheme was repeated twice, each time with half of the initial quantities. A solution of sodium hydroxide (45 g) was added slowly to the combined bisulfite extracts with stirring and cooling to maintain the temperature below 10° while the pH was adjusted to 11 toward the end. The crystals were collected by suction, washed with water, and air-dried overnight. The yield of product was 85.4 g (65%), mp 38–40°. Recrystallization of a sample from *n*-hexane afforded pure material, mp 40–41°; nmr (CDCl₃) δ 3.56 (s, 3*H*), 5.16 (s, 2*H*), 6.95–7.35 (m, 1*H*), 7.5–7.9 (m, 2*H*), and 10.25 (s, 1*H*).

6.2.1.12. N-t-Butyl-o-formyl-N-methylbenzenesulfonamide (Ortho Lithiation of a Tertiary Arylsulfonamide with n-butyllithium in Ether) (24)

A solution of 200 g (0.88 mol) of N-*t*-butyl-N-methylbenzenesulfonamide in 2.1 g/L of anhydrous ether was cooled to -70° under an atmosphere of nitrogen. At that temperature the sulfonamide precipitated partially. Then 570 mL of a 1.6 *M* solution of *n*-butyllithium in hexane (0.91 mol) was added dropwise. The mixture was warmed to 0° and kept at that temperature for 1 hour. Subsequently, a solution of dimethylformamide (76 g, 1 mol) in 200 mL of anhydrous ether was added dropwise. After an additional hour at ice-bath temperature, the reaction was quenched with water, and the ether was separated and dried over sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was triturated with cold isopropyl alcohol to give 183 g (81%) of white crystalline product, mp 69–71°; ir (Nujol) 1690 cm⁻¹; nmr (CDCl₃) δ 1.20 (s, 9*H*), 2.72 (s, 3*H*), 7.2–7.8 (*m*, 4*H*), and 10.54 (s, 1*H*).

7. Tabular Survey

The information in the following tables is an extension of that reviewed previously, (1) covering the literature to the end of December 1977. Additional significant findings reported through August 1978 are included as well. Although the attempt has been made to present an exhaustive list of *successful* examples of this reaction, difficulties in searching the literature make it likely that some references were overlooked. The arrangement of the tabular survey parallels the text; *i.e.*, the main division is according to the *type* of lithiation. Alpha lithiations are presented first, followed by beta (*ortho*) lithiations. Within each type the next determinant is the heteroatom of the directing functionality, the tables being arranged in the order of the increasing atomic number of the heteroatom. The final arrangement is then determined by the specific directing functionality.

Within each table the compounds lithiated are listed according to the increasing number of carbon atoms. If a compound contains more than one director, it can be found in each table appropriate for the specific director. The conditions stated are those of the lithiation itself and not of subsequent reactions with electrophiles. To avoid ambiguity temperature ranges below 0° C are expressed, for example, as: -70° to -30° . If a reference contains more than one set of lithiation conditions for a particular compound, these data are fully presented only if it was deemed significant. When there is more than one reference for a given compound-substrate combination, the information tabulated is considered to describe the optimum lithiation conditions reported. This reference is listed first, and the remaining references are arranged in numerical order. In the substrate column, aside from the electrophile, other reagents are listed only if the initial intermediate is further transformed, e.g., oxidized, hydrolyzed, etc. In naming products attempts have been made to conform to Chemical Abstracts nomenclature (Vols. 56-65). Yields, which are indicated by a dash (-), are not specified in the reference(s) cited. Lithiation conditions or substrates, marked by an asterisk (), are to be taken as an interpretation of the authors because the original report was not explicit.

Standard abbreviations used throughout the tables are the following:

BuLi	<i>n</i> -butyllithium
LDA	lithium diisopropylamide
LDCA	lithium dicyclohexylamide
LTMP	lithium tetramethylpiperidide
DMF	dimethylformamide
DMA	dimethylacetamide

THF	tetrahydrofuran
HMPA	hexamethylphosphoramide
ether	diethyl ether
pet. ether petroleum ether	
Ac	acetyl
Et	ethyl
THP	tetrahydropyranyl

Table I. Enamines (Alpha)

View PDF

Table II. Vinyl Isocyanides (Alpha)

View PDF

Table III. Formamides and Thioformamides (Alpha)

View PDF

Table IV. Pyrroles (Alpha)

Table V. Indoles (Alpha)

View PDF

Table VI. Pyrazoles (Alpha)

View PDF

Table VII. Imidazoles (Alpha)

View PDF

Table VIII. Benzimidazoles (Alpha)

View PDF

Table IX. Imidazo[1,2-a]pyridines (Alpha)

View PDF

Table X. Triazoles (Alpha)

Table XI. Tetrazoles (Alpha)

View PDF

Table XII. Pyridines and Condensed Pyridines (Alpha)

View PDF

Table XIII. Pyridine-N-Oxides (Alpha)

View PDF

Table XIV. Pyrimidines (Alpha)

View PDF

Table XV. Alkyl Vinyl Ethers and Allenic Ethers (Alpha)

View PDF

Table XVI. Furans (Alpha)

Table XVII. Condensed Furans (Alpha)

View PDF

Table XVIII. Oxazoles and Oxazolines (Alpha)

View PDF

Table XIX. Vinyl Sulfides and Allenic Thioethers (Alpha)

View PDF

Table XX. Vinyl Sulfoxides (Alpha)

View PDF

Table XXI. Thiophenes (Alpha)

View PDF

Table XXII. Condensed Thiophenes (Alpha)

View PDF

Table XXIII. Isothiazoles (Alpha)

View PDF

Table XXIV. Thiazoles (Alpha)

View PDF

Table XXV. Benzothiazoles (Alpha)

View PDF

Table XXVI. Vinyl Selenides (Alpha)

View PDF

Table XXVII. Selenophenes (Alpha)

Table XXVIII. Tellurophenes (Alpha)

View PDF

Table XXIX. Fluoro-, Chloro-, and Bromoalkenes (Alpha)

View PDF

Table XXX. Miscellaneous Mesoionic Compounds

View PDF

Table XXXI. Mono-, Di-, and Triarylamines (Ortho)

View PDF

Table XXXII. α -Lithio(N-alkylidene)arylamines (Aryl Isocyanides)(Ortho)

View PDF

Table XXXIII. Aralkylamines and Allylamines (Ortho, Beta)

Table XXXIV. 2-Arylethylamines (Ortho, Beta)

View PDF

Table XXXV. a -Alkoxidoaralkylamines (Ortho, Beta)

View PDF

Table XXXVI. Arylcarboxamides (Ortho, Beta)

View PDF

Table XXXVII. Arylthiocarboxamides (Ortho)

View PDF

Table XXXVIII. 2-Aryloxazolines and 2-Aryloxazines (Ortho, Beta)

View PDF

Table XXXIX. Arylcarbimines (Ortho, Beta)

View PDF

Table XL. N-Arylpyrazoles (Ortho)

View PDF

Table XLI. AryInitriles and α , β -Unsaturated Nitriles (Ortho, Beta)

View PDF

Table XLII. Alkyl Vinyl Ethers and Alkyl Aryl Ethers (Ortho, Beta)

View PDF

Table XLIII. Alkoxyalkyl Aryl Ethers (Ortho)

View PDF

Table XLIV. Diaryl Ethers and Condensed Diaryl Ethers (Ortho)
Table XLV. Alkyl Aralkyl Ethers and Aralkyl Alcohols (Ortho, Beta)

View PDF

Table XLVI. α -Silyloxystyrenes (Ortho)

View PDF

Table XLVII. Arylcarboxylic Acids, Esters, and Diarylketones (Ortho,Beta)

View PDF

Table XLVIII. Alkyl Aryl Sulfides (Ortho, Beta)

View PDF

Table XLIX. Diaryl Sulfides and Condensed Diaryl Sulfides (Ortho, Beta)

View PDF

Table L. Sulfones (Ortho, Beta)

View PDF

Table LI. Arylsulfonamides (Ortho, Beta)

View PDF

Table LII. Aryl Fluorides and Vinyl Fluorides (Ortho, Beta)

View PDF

Table LIII. Aryl Chlorides and Vinyl Chlorides (Ortho, Beta)

View PDF

Table LIV. Aryl Bromides (Ortho, Beta)

View PDF

Table LV. Aryl lodides (Beta)

View PDF

Table LVI. (Trifluoromethyl)benzenes (Ortho)

View PDF

Table LVII. Arylphosphine Oxides and Imides (Ortho, Beta)

View PDF

Table LVIII. Selenides (Ortho, Beta)

View PDF

100 million	Compound Litinated	Conditions	Substrate	Product and Tield (%)		Ref
SL()	~ CN		12.43	~ CN	a de la dela dela dela dela dela dela de	-
C ₇ H _e N ₂	N	LDA/THF/ -80°/20 hr	CH₃OD	N	X = D (65)	218
	ĊH.			CH.		
				chij		
	1000		FSO ₂ OCH ₃		$\mathbf{X} = \mathbf{C}\mathbf{H}_3 (77)$	21
	CN CN		100 miles	CN	also and being	
	N	-80°/1.5 hr	CH ₃ OD	N	$\mathbf{X} = \mathbf{D} (54)$	211
	CH ₃			CH.		
			FSO ₂ OCH ₃		X=CH. (72)	215
	~			^	1. 1. 1. 1. J.	-
C7H10N2	CM CN	LDA/THF, pentane/ -113°/40 min	CH3OD	CN	X = D (95)	570
		**	CH ₃ I	~	$X = CH_2$ (74)	57c
			C ₂ H _s I C ₄ H ₅ CHO		$X = C_2 H_5$ (35) $X = CH(OH)C_4 H_4^{a}$ (42)	57c
				9		070
				X	$X = CO_2C_2H_5$	
CoH15NO2	N mar	H I-BuLi/THF/	C2H3CO2CH=CHN) Y Y	Y=H (41)	576
		~~3 –113°/15 min				
		Ξ.	C ₆ H ₅ CH = CHCO ₂ C ₄ H ₉ -r		$ \begin{array}{l} X = CO_2C_4H_{9^{-1}} \\ Y = H \\ Z = C_6H_5 \end{array} \right\} \ (67)$	57
					$X = COC_6H_5$	
		+	C6H3COCH=CHN	¢	$ \begin{array}{c} \mathbf{Y} = \mathbf{H} \\ \mathbf{Z} = \mathbf{N} \end{array} $ (49)	57
			C ₆ H ₅ CH=C(C ₆ H ₅)CN		$ \begin{array}{l} X = Z = C_6 H_3 \\ Y = C N \end{array} $ (32)	57
		**	C ₆ H ₃ COCH=CHCOC ₆ H ₃	o	$ \begin{array}{l} X = Z = COC_6 H_5 \\ Y = H \end{array} $ (25)	571
			сн,сно	N.YX	$ \begin{array}{l} X = CH_3 \\ Y = H \end{array} \right\} (49)$	57
			HCO ₂ C ₂ H ₅		$ \begin{array}{l} X = OC_2H_5 \\ Y = H \end{array} \right\} (52)$	571
			(CO ₂ CH ₃) ₂		$ \begin{array}{l} X = CO_2 CH_3 \\ Y = OCH_3 \end{array} \right\} (58) $	57
			C&H3CHO		$ \begin{array}{l} X = C_6 H_5 \\ Y = H \end{array} $ (51)	57
			C.H.CO.CH.		$X = C_6 H_2 $ (43)	57
C. H. N	\cap	BuLi/THF/0%	D,0	\bigcap	(82)	74

TABLE I. ENAMINES (ALPHA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
C11H20N2		1-BuLi/THF/ H ₅) ₂ -115°	сн,ор	$ \begin{array}{c} $	57a
		ч н л	CH3I C2H3I C4H3CO2CH4	$X = CH_3$ (95) $X = C_2H_5$ (60) $X = COC_6H_5$ (95)	57a 57a 57a
		"	p-CH ₃ C ₆ H ₄ CO ₂ CH ₃	$\mathbf{X} = \mathbf{COC_6H_4CH_3} - p (60)$	57a
		t-BuLi/THF/ - 120°/0.5 hr	p-O₂NC ₆ H₄CHO	$\mathbf{X} = \mathbf{CH}(\mathbf{OH})\mathbf{C}_{\mathbf{A}}\mathbf{H}_{\mathbf{A}}\mathbf{NO}_{2}\mathbf{-}\mathbf{p} (60)$	604
		÷-	C ₆ H ₃ CHO	$X = CH(OH)C_6H_5 (61)$	604
				$ \left(\begin{array}{ccc} 0 & X = 0 \\ X & R_1 R_2 = \\ N R_1 R_2 & O \\ \end{array}\right) $ (56)	604
			(C ₆ H ₅) ₂ CO	$ \begin{array}{l} \mathbf{X} = \mathbf{O} \\ \mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}_6 \mathbf{H}_5 \end{array} \right\} $ (45)	604
			C ₆ H ₅ CH=NC ₆ H ₅	$ \left. \begin{array}{c} X = NC_6H_5 \\ R_1 = H \\ R_2 = C_6H_5 \end{array} \right\} $ (26)	604
			p-(CH ₃) ₂ NC ₆ H ₄ CH=NC ₆ H ₅	$ \left. \begin{array}{l} X = NC_6H_5 \\ R_1 = H \\ R_2 = NC_4H_4N(CH_3)_2 - p \end{array} \right\} $ (21)	604

TABLE I. ENAMINES (ALPHA) (Continued)

*This compound was contaminated with the ring isomer.

Note: References 360-607 are on pp. 355-360.

TABLE II. VINYL ISOCYANIDES (ALPHA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C ₇ H ₉ N	NC	BuLi/THF, ether, pet. ether/-110°/ 0.5 hr	(CH ₃) ₃ SiCl	α-(Trimethylsilyl)Δ ^{1.α} -cy	clopentane isocyanide (63)	76
C ₉ H ₇ N	C ₆ H ₅ CH=CHNC	BuLi/THF, ether, pet. ether/-110°/ 0.5 hr	CO2	C ₆ H ₃ CH=C(NC)X	$\mathbf{X} = \mathbf{CO}_2 \mathbf{L} \mathbf{i} (95)$	76
			CH ₃ I		$X = CH_3$ (75)	76
			CICO2C2H5		$X = CO_2C_2H_5$ (70)	76
			(CH ₃) ₃ SiCl		$X = Si(CH_3)_3$ (53)	76
			C6H5COCI		$X = COC_6H_5 (94)$	76
				C(OH)	RR'	
			CH ₃ COCH ₃	$C_6H_5CH = \bigcirc 0$	$R = R' = CH_3$ (77)	76
			C ₆ H ₅ CHO			
			(C6H5)2CO		$\mathbf{R} = \mathbf{R}' = \mathbf{C}_6 \mathbf{H}_5 ()$	76
C ₁₀ H ₉ N	C ₆ H ₅ (CH ₃)C=CHNC	BuLi/THF, ether, pet. ether/-110°/ 0.5 hr	(CH ₃) ₃ SiCl	β -Methyl- α -(trimethylsily	l)cinnamylisocyanide (78)	76

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
1	C ₃ H ₇ NO	HCON(CH ₃) ₂	LDA/THF/ether, -78°	t-C.H.CHO	(CH ₃) ₂ NCOX	$\mathbf{X} = \mathbf{CH}(\mathbf{OH})\mathbf{C}_{4}\mathbf{H}_{9} \cdot t (76)$	78
				Cyclohexanone		X=HO (62)	78
				C₄H₄CHO		$X = CH(OH)C_6H_5$ (45)	78
				C ₆ H ₅ CH=CHCHO		$X = CH(OH)CH = CHC_6H_5(48)$	78
				(C ₆ H ₅) ₂ CO		$X = C(C_6H_5)_2OH$ (85)	78
				triene-17-one	estratriene-17-carboxam	ide (72)	78
	C ₃ H ₇ NS	HCSN(CH ₃) ₂	LDA/THF/-100%	CH-I	(CH ₃) ₂ NCSX	X = CH ₃ (50)	77, 80
			3 min LDA/THF, ether, HMPA/-100°/	C ₂ H ₃ I		$\mathbf{X} = \mathbf{C}_2 \mathbf{H}_s (70)$	77
			LDA/THF/-100°	C ₂ H ₅ CHO		$X = CH(OH)C_2H_5$ (80)	77
			3 mm	CH3COCH3		$X = C(CH_3)_2OH$ (85)	77.80
			<u>а</u>	Cyclohexenone		X = HO (50)	77
			9 0	Cyclohexanone		X=HO (65)	77, 80
			-19-	С₄Н₄СНО		$X = CH(OH)C_6H_5 (75)$	77, 80
			w	C&H_COCH.			77.80
			19	C ₆ H ₅ CO ₂ CH ₃ (C ₆ H ₅) ₂ CO		$X = COC_6H_5$ (85) $X = C(C_6H_5)_2OH$ (85)	77,80 80
	C _e H ₉ NO ₂	HCON(CH ₃)CH ₂ OCH ₃	LDA/THF/-75°/ 3 hr	Cyclohexanone	CH ₃ OCH ₂ (CH ₃)NCOX	X=HO (39)	79
				C ₆ H ₅ CHO		$X = CH(OH)C_0H_s$ (76)	79
				C ₆ H ₅ CH=CHCHO		$X = CH(OH)CH = CHC_6H_5$ (40)	79
				(C ₆ H ₅) ₂ CO		$X = C(C_6H_5)_2OH$ (85)	79
è	C ₅ H ₁₁ NO ₃	HCON(CH ₂ OCH ₃) ₂	LDA/THF/-75% 3 hr	Cyclohexanone	(CH ₃ OCH ₂) ₂ NCOX	X=HO (44)	79
						and a second state of the	
				C,H,CHO		$X = CH(OH)C_6H_5$ (74) X = C(C, H, C)OH (88)	79
	C _s H ₁₁ NS	HCSN(C ₂ H ₅) ₂	LDA/THF/-100%	C ₆ H ₅ CHO	N,N-Diethylthiomandelam	ide (86)	77
	C7H15NO	HCON(C ₃ H ₇ -i) ₂	t-BuLi/THF, ether,	D ₂ O	(i-C ₃ H ₇) ₂ NCOX	X = D (70)	569, 578, 579
			LDA/THF/-78°/ 5 min	CH3I		$X = CH_3$ (20)	579
			r-BuLi/THF, ether, pentane/-95°	C ₂ H ₅ CHO		$X = CH(OH)C_2H_5 (62)$	569, 578, 579
				CH3COCH3		$X = C(CH_3)_2OH$ (81)	569, 578, 579
				Cyclohexanone		X=HO (83)	569
						N - CHIOTIC II (80)	\$60 579 570

TA	BLE III. For	rmamides and Thioformamides (Alpha)	

TABLE III. FORMAMIDES AND THIOFORMAMIDES (ALPHA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C7H15NO (Contd.)	HCON(C ₃ H ₇ -i) ₂	22	C ₆ H ₅ CO ₂ C ₂ H ₅	$\mathbf{X} = \mathbf{COC}_{6}\mathbf{H}_{5} (70)$	569, 578, 579
		74	CAHACH=CHCHO	$X = CH(OH)CH = CHC_{*}H_{*}$ (68)	569. 578
		LDA/THF/-78°/ 5 min	(C ₆ H ₅) ₂ CO	$X = C(C_6H_5)_2OH (92)$	578, 579
		t-BuLi/THF, ether, pentane/-95°/ 45 min	A.	$\mathbf{X} = \mathbf{C}(\mathbf{C}_{\mathbf{s}}\mathbf{H}_{5})_{\mathbf{z}}\mathbf{O}\mathbf{H} (85)$	569
C ₉ H ₁₉ NS	$HCSN(C_4H_9-n)_2$	LDA/THF/-100%/ 3 min	C ₆ H ₅ CHO	N,N-Dibutylthiomandelamide (71)	77
				N.N-Dibutyl-2,2-dicyclohexyl-2-hydroxythioacetamide	77
C ₁₃ H ₁₁ NS	HCSN(C ₆ H ₅) ₂	LDA/THF/ - 100°/ 3 min	С₅Н₅СНО	N,N-Diphenylthiomandelamide (57)	77

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C ₅ H ₇ N		EtLi/ether, TMEDA/ reflux/1 hr	CuCl	$ \begin{array}{c} & X = \begin{array}{c} & X \\ & X \end{array} $ (8)	68
	CH ₃	Bul i/ether TMEDA/	1	CH ₃ CH ₃ X = 1 (30)	69
		reflux/1 hr	12	X-1 (50)	00
			CO ₂	$X = CO_2 H$ (70)	68, 81
		BuLi/ether/reflux/ "overnight"	CH ₂ = CHCH ₂ Cl	$X = CH_2CH = CH_2 (20)$	580
		BuLi/ether	CIB(CH ₃)N(CH ₃) ₂	$X = B(CH_3)N(CH_3)_2 (37)$	295
		27	CIB[N(CH ₃) ₂] ₂	$X = B[N(CH_3)_2]_2$ (45)	295
			CI-B	$\mathbf{X} = \mathbf{B} \tag{20}$	295
		**	CIB(C ₂ H ₅) ₂	$\mathbf{X} = \mathbf{B}(\mathbf{C}_{2}\mathbf{H}_{5})_{2} (48)$	295
		EtLi/ether, TMEDA/ 34°/1 hr	C ₆ H ₅ I/CuBr	$\mathbf{X} = \mathbf{C_6}\mathbf{H_5} (41)$	68
		2.5 BuLi/hexane, TMEDA/25°/0.5 hr	CO ₂ (CH ₂ N ₂)	Dimethyl 1-methylpyrrole-2,4- dicarboxylate (I) (100)	40, 58
		2.5 BuLi/hexane,	31	I (41),	40
		TMEDA/reflux/ 0.5 hr		Dimethyl 1-methylpyrrole-2,4- dicarboxylate (II) (7), dimethyl 1-methylpyrrole-2,5- dicarboxylate (III) (50)	
		4.5 BuLi/hexane, TMEDA/reflux/ 120 hr	**	I (4), II (40), III (2)	40
		BuLi/hexane/ reflux/0.5 hr	DMF	1-Methylpyrrole-2,4-dicarboxaldehyde (581

TABLE IV. Pyrroles (Alpha)

TABLE IV. PYRROLES (ALPHA) (Continued)

pound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
l H,	BuLi/ether/ 25°/8 hr	CO ₂	1-Phenylpyrrole-2-carboxylic acid (14)	81
	2 BuLi/ether/ reflux/14 hr		(5)	81
S C.H.	BuLi/ether, pentane, heptane/25°/	CO ₂ (CH ₂ N ₂)	CH ₃ O ₂ C CH ₃ O ₂ C CHCO ₂ CH ₃ (85)	582
	pound Lithiated H_5 S_2 $L_2C_6H_5$	S BuLi/ether, 25°/8 hr H ₅ BuLi/ether, reflux/14 hr BuLi/ether, pentane, heptane/25°/	pound Lithiated Conditions Substrate BuLi/ether/ CO_2 $25^{\circ}/8 hr$ H ₅ 2 BuLi/ether/ " reflux/14 hr S BuLi/ether, $CO_2(CH_2N_2)$ pentane, heptane/25^{\circ}/1	pound Lithiated Conditions Substrate Product and Yield (%) BuLi/ether/ CO ₂ 1-Phenylpytrole-2-carboxylic acid (14) 25°/8 hr H ₅ 2 BuLi/ether/ " i' i' i' i' i' i' i' i'

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C ₉ H ₉ N	CTN CH3	BuLi/ether/ reflux/8 hr	CO2	$ \begin{array}{c} $	83
			(CO ₂ C ₂ H ₃) ₂	X = COCO ₂ H (59)	583, 584
		-0-	CAHANCO	$X = CONHC_{s}H_{s}$ (42)	83
			p-CIC.H.CHO	$X = CH(OH)C_{e}H_{a}Cl-p (50)$	83
		-	o-CH3C6H4NCO	$X = CONHC_6H_4CH_3-0$ (63)	83
		÷.	p-CH3OC6HANCO	$X = CONHC_6H_4OCH_3 - p (40)$	83
			p-CH ₃ C ₆ H ₄ SO ₂ OCH ₃	$\mathbf{X} = \mathbf{C}\mathbf{H}_{3} (45)$	83
			(C ₆ H ₅ N)	$\mathbf{D}_{2}) \qquad \mathbf{X} = \underbrace{\mathbf{N}}_{(54)}$	83
		•	1-Naphthyliso- cyanate	X = CONH (52)	83
			(C₅H₅)₂CO	$X = C(C_6H_5)_2OH$ (53)	83

TABLE V. INDOLES (ALPHA)

TABLE V. INDOLES (ALPHA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Rei
C14H11NO2S (Contd.)	SO ₂ C ₆ H ₅	r-BuLi/THF/- 12°- 25°/20 min	CiCO₃C₂H₅		$\mathbf{X} = \mathbf{CO}_{2}\mathbf{C}_{3}\mathbf{H}_{4} (75)$	85
			CHO CHO		X = CH(OH) (32)	85
			COCI		X = CO	85
		ï	C₀H₃CHO C₀H₃COCI		$X = CH(OH)C_{6}H_{5}$ (55) $X = COC_{6}H_{5}$ (65)	85 85
			COCH ₃		$X = C(CH_3)$ OH (35)	85
			C ₆ H ₅ COCH ₅		$\mathbf{X} = \mathbf{C}(\mathbf{CH}_3)\mathbf{C}_6\mathbf{H}_5 (64)$	85
			p-CH3OC6H4CHO p-CH3OC6H4COCH3		OH $X = CH(OH)C_{6}H_{4}OCH_{3}-p$ (65) $X = C(CH_{3})C_{6}H_{4}OCH_{3}-p$ (35) OH	85
		H	(H ₃ O ⁺)	∭ H H	X=CON_(36)	85
			\bigvee_{N}^{CN} (H ₃ O ⁺)		X = CO (26)	85
			C₀H₃CN(H₃O⁺)		$X = COC_6H_5$ (30)	85
		.**.	$CO_2C_2H_5$		X = CO (22)	85
			CO ₂ C ₂ H ₅		X=CO	85
			C6H3CO2C2H5		$X = COC_6H_5$ (26)	85
C15H13NO3S	сн,о	I-BuLi/THF/0°- 25°/45 min	Слосно	CH ₃ O	X = CH(OH) (59)	84

TABLE V. INDOLES (ALPHA) (Continued)

TABLE V. INDOLES (ALPHA) (Continued)

" The isolated yield was 74%; the deuterium incorporation was 75%. Note: References 360-607 are on pp. 355-360.

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C ₃ H ₃ BrN ₂	Br NN H	C _o H ₃ Li/ether/25°/ 2 hr	CO,	4-Bromopyrazole-5-carboxylic a	icid (35)	87
C3H4N3	√ N H	Bul.i/ether/-30°/ 2 hr	CO2	Pyrazole-5-carboxylic acid (9)		87
C4H6N2	∑ _N N ⊢ CH,	Bul.i/ether/-20°	CO2	NN CH ₃ (1)	$\mathbf{X} = \mathbf{CO}_{2}\mathbf{H} (66)$	87, 88
		BuLi/ether/-30°-	(CH ₃ O) ₂ SO ₂		X = CH ₃ (75)	87
		20°/2 hr BuLi/ether/-30°- 20°/4 hr	(C ₆ H ₅) ₂ CO		$X = C(C_8H_5)_2OH (87)$	87
		BuLi/ether/25°/ 1.5 hr	С₀Н₅СНО		$X = CH(OH)C_6H_5$	86
				11 11 00 (1.11 44.24)		

TABLE VI. Pyrazoles (Alpha)

(1+11, 88) (1:11, 66:34)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Ref
C _s H _e N ₂	CH ₃ CH ₃	BuLi/ether/ reflux/0.5 hr	С₅н₃Сно	$\begin{array}{c} CH_{3} \\ N_{N} \\ CH_{3} \\ CH_{3} \\ (III + IV, 90) (III : IV, 2:1) \end{array} \xrightarrow{CH_{3}} \\ CH_{3} \\ CH_{2}X \\ CH_{2}X \\ CH_{2}X \\ CH_{2}X \\ CH_{3} \\ CH_{2}X \\ CH_{3} \\ CH_{2}X \\ CH_{3} \\ $	86
$C_6H_{10}N_2$	$\sum_{\substack{N \\ C_3H_7-n}}$	BuLi/ether/25°/ 1 hr	C₅H₃CHO	α-Phenyl-1-propylpyrazole-5-methanol (81)	86
C7H12N2	CH ₃ V C ₃ H ₇ -n	BuLi/ether/25°/ 0.5 hr	С₅Н₃СНО	3-Methyl-α-phenyl-1-propylpyrazole-5-methanol (95)	86
C ₉ H ₈ N ₂	C ₆ H ₅	BuLi/ether/0°- 25°/2 hr	CO2	1-Phenylpyrazole-5-carboxylic acid (39), 1-(o-Carboxyphenyl)pyrazole (10)	88
		2 BuLi/ether/25° 7 hr		$O = \left\{ \begin{array}{c} N \\ N \\ \end{array} \right\} (8), \qquad O = \left\{ \begin{array}{c} N \\ N \\ \end{array} \right\} (26)$	88
C ₁₀ H ₁₀ N ₂	CH ₂ C ₆ H ₅	C _o Holi/ether/ 25°/3 hr	CO ₂	1-Benzylpyrazole-5-carboxylic acid (57)	87
	CH ₃ N ^N C ₈ H ₅	Bul <i>i/</i> ether/25°/ 2 hr	CO2	3-Methyl-1-phenylpyrazole=5-carboxylic acid (—)	585
C14H15CIN	P-CIC ₆ H	THP Buli/ether/0°/	CH₂O	$p-CIC_6H_4$ N-THP X=CH ₂ OH (73)	23
		210 M	1-C4H9NCO (C6H3S)2	$X = CONHC_4H_9-t (63)$ $X = SC_9H_9 (80)$	23 23
C18H14N4	A A	BuLi/THF/20°	CuI(O ₂)		282

TABLE VI. PYRAZOLES (ALPHA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C4H5BrN2	Br N N CH ₃	BuLi/ether/-80°	Сн₃сно	4-Bromo-α,1-dimethylimidazole-2-methanol (50)	92
C ₄ H ₅ ClN ₂	a	BuLi/ether/-80°	сн,сно	5-Chloro-α,1-dimethylimidazole-2-methanol (64)	92
C4H6N3	CH ₃	BuLi/ether/-60°/ 2 hr, 25°/3 hr	со,	$\begin{bmatrix} N \\ N \\ -X \\ H \\ CH \end{bmatrix} = CO_2 H (32)$	586
		BuLi/ether/-78°/	Сн,сно	X = CH(OH)CH ₃ . (35)	92
		1 hr BuLi/ether/ reflux/1 hr	(CH ₃) ₃ SiCl	$X = Si(CH_3)_s (56)$	93
		BuLi/ether/25°/ 1 hr	СНО	X=CH(OH) (48)	587
			CHO N	X = CH(OH) (33)	587
		÷.	C₄H₄N₃	$X = NH_2$ ()	287
		BuLi/ether/25°/	Cyclohexanone	$\mathbf{X} = \underbrace{\mathbf{OH}}_{\mathbf{(56)}}$	587
		1 m 	n-C6H13CHO C6H3CH2CHO 3,4-(CH3O)2C6H3CHO	$X = CH(OH)C_{6}H_{13}-n (41)$ $X = CH(OH)CH_{2}C_{6}H_{5} (44)$ $X = CH(OH)C_{6}H_{3}(OCH_{3})_{2}-3,4$	587 587 587
			₽-(CH ₃)2NC6H4CHO	(23) $X = CH(OH)C_6H_4N(CH_3)_2-p$ (48)	587
		۳.	NCO	X = CONH (66)	586
		" 2 BuLi/ether/ -70°/2.5 hr	(C ₆ H ₅) ₂ CO (CH ₃) ₃ SiCl	$X = C(C_6H_5)_2OH (86)$ 1-Methyl-2,5-bis(trimethylsilyl)imidazole (32)	586 93
C₅H ₈ N₂	CH ₃	BuLi/ether/-10°/ 15 min	DMF	$CH_{3} \xrightarrow{N}_{I} (I) \qquad X = CHO (20)$	90
		÷	(C ₂ H ₅) ₂ NBr	X = Br (26)	90
		BuLi/ether/0°/ 1 hr	C₄H₃CHO	(I), $XCH_2 \rightarrow \bigvee_{\substack{N \\ N \\ CH_3}}^{N}$ (II)	
				(I+II, 70) (I:II, 25:75) X = CH(OH)C ₆ H ₅	588, 9

TABLE VII. IMIDAZOLES (ALPHA)

Formula	Compound Lithia	ated Conditions	Substrate	Product and Yield	(%)	Refs
C3H4N2 (Contd.)	CH ₃	CsHsLi/ether, benzene/0 ^e / 0.5 hr	С, Н, СНО	і, п (і+п, 60) (і:п, 1:1	0	.589
		BuLi/ether/-15°/ 5-20 min	CHO	П (66)	X = CH(OH)	91
		BuLi/ether/-10°/	C ₆ H ₅ C=Cl	1	X = I (48)	90
			(C ₆ H ₅) ₂ CO	1	$X = C(C_{s}H_{s})_{2}OH$ (73)	90
	CH ₃ CH ₃	Bul.i/ether/-80°	сн₄сно	a,1,5-Trimethylimid	azole-2-methanol (30)	92
C ₅ H ₈ N ₂ O	CH2OCH3	BuLi/ether	C₄H₅CHO	1-(Methoxymethyl)-	a-phenylimidazole-2-methanol (45)	587
C ₆ H ₁₀ N ₂	CH ₃ CH ₃ CH ₃ CH ₃	BuLi/ether/-80°	сн,сно	α , 1, 4, 5-Tetramethyl	imidazole-2-methanol (24)	92
C•HªN3		BuLi/ether/25°/ 8 hr	CO ₂	(NXXX	X = CO ₂ H (46)	586
	Cons	BuLi/ether/25°/	C₅H₃N₃ C₅H₃NCO	C6n5	$X = NH_2()$ $X = CONHC_6H_5 (39)$	287
		8 hr 	(C ₆ H ₅) ₂ CO	N	$X = C(C_sH_s)_2OH$ (76)	580
		3 Bull/ether/	CO ₂	N (5)		586
		redux/12 hr		\bigcirc		
C ₂ H ₈ N ₂ O ₂ S		1-BuLi/THF/ -20°/10 min	D ₁ O	(N) x	X=D (100)	573
	SO ₂ C ₆ H ₅	n-BuLi/THF/- 10°/	1.	SO ₂ C ₆ H ₅	X=1 (7)	573
		I-BuLi/THF/ - 20°/0.5 hr	CH ₂ O		$X = CH_2OH$ (10)	573
		n-BuLi/THF/0°/	Cyclohexanone		X=HO (15)	573
		1-BuLi/THF/0°/ 10 min	C.H.CHO		X = CH(OH)C ₆ H ₅ (18)	573
C10H10N2		BuLi/ether/-60°/ 2 hr, 25°/2 hr	CO3		X = CO ₂ H (67)	586

TABLE VII. IMIDAZOLES (ALPHA) (Continued)

Note: References 360-607 are on pp. 355-360.

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
C7H6N2		BuLi/ether/-70°	(CH ₃) ₃ SiCl	2-(Trimethylsilyl)benzimidazole (17)	93
C ₈ H ₈ N ₂	(CL'N)	BuLi/ether/25°	-	1,1'-Dimethyl-2,2'-bibenzimidazole (53)	591
	CH3	BuLi/ether/-60°/	CO2	1-Methylbenzimidazole-2-carboxylic acid (45)	591
		BuLi/ether/-70°	(CH ₃) ₃ SiCl	1-Methyl-2-(trimethylsilyl)benzimidazole (91)	93
C12H10N2	CH.	BuLi/ - 78°.	CO ₂	$CH_{2} CO_{2}H$ (80) $CH_{3} CO_{2}H$	607
		BuLi/-78°	CO2	(72)	607
C ₁₃ H ₁₀ N ₂	() N	C ₆ H ₅ Li	CO ₂	1-Phenylbenzimidazole-2-carboxylic acid (25)	592
$C_{13}H_{10}N_2$		BuLi/-78° C ₆ H ₅ Li	CO ₂	1-Phenylbenzimidazole-2-carboxylic ac	id (25)

TABLE VIII. BENZIMIDAZOLES (ALPHA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
C14H12N2	CH ₂ C ₆ H ₅	BuLi/ether/ - 70°- 25°/2 hr	$ \begin{array}{c} 0\\ 0\\ (CH_3)_2\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{c} $	$\binom{O}{O}$ (CH ₃) ₂ (40) 590
		(n		$\mathbf{X} = \underbrace{\begin{array}{c} \mathbf{HO} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{(CH_3)_2} \end{array}}_{\mathbf{O} \\ \mathbf{O} \\ \mathbf{O}$	-OH (25) 590

TABLE VIII. BENZIMIDAZOLES (ALPHA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
C ₇ H ₆ N ₂		C ₆ H ₅ Li/ether/10 min	DMF	$ \begin{array}{c} & & \\ & & $	94
			Cyclohexanone	X= (35)	94
		*	C ₆ H ₅ NCO	$X = CONHC_6H_5$ (15)	94
$C_8H_8N_2$	CN CH3	C ₆ H ₅ Li/ether/10 min	Cyclohexanone	1-(2-Methylimidazo[1,2-a]pyridin-3-yl) cyclohexanol (14)	94
	CH, N	C_6H_5Li /ether/10 min	Cyclohexanone	1-(6-Methylimidazo[1,2-a]pyridin-3-yl) cyclohexanol (40)	94
	CH ₃ CH ₃	C ₆ H ₅ Li/ether/10 min	Cyclohexanone	1-(7-Methylimidazo[1,2-a]pyridin-3-yl) cyclohexanol (48)	94
		C ₆ H ₅ Li/ether/10 min	Cyclohexanone	1-(8-Methylimidazo[1,2-a]pyridin-3-yl) cyclohexanol (42)	94

TABLE IX.	IMIDAZO[1,2-a]PYRIDINES (ALPHA)	

TABLE X. TRIAZOLES (ALPHA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Ref
C ₈ H ₇ N ₃	N_N-C ₆ H ₅	BuLi/THF/ - 20° to - 60°/0.5-1 hr	CH3I	5-Methyl-1-phenyl-1H-1,2,3-	triazole (94)	95
C₀H₀N₃	CH ₃ NN-C ₆ H ₅	BuLi/THF/- 20° to - 60°/0.5-1 hr	CH ₃ I	4,5-Dimethyl-1-phenyl-1H-1,	2,3-triazole (81)	95
	C6H5					
$C_{14}H_{11}N_3$	N_N-C ₆ H ₅	BuLi/THF/-20° to -60°/0.5-1 hr	CO2	1,4-Diphenyl-1H-1,2,3-triazol carboxylic acid (62)	e-5-	95
			CH-1	5-Methyl-1,4-diphenyl-1H-1,2	2,3-triazole (78)	95
	CH ₂ C ₆	Hs		CH ₂ C ₆ H ₅		
C15H13N3	C ₆ H ₅ N-N	BuLi/THF/-78°	CH₂O	CeH5 N X	$X = CH_2OH (78)$	96
			(C ₆ H ₅) ₂ CO		$X = C(C_{\alpha}H_{3})_{2}OH (92)$	96
		2	(p-CH ₃ OC ₆ H ₄) ₂ CO		$X = C(C_6H_4OCH_3-p)_2OH$ (94)	96

TABLE XI. TETRAZOLES (ALPHA)

TABLE XII. Pyridines and Condensed Pyridines (Alpha)

	Formula	Compound Lithiated	Conditions	Sabstrate	Product and Yield (%)	Refs.
13	C ₅ H ₅ N	\square	LDA/ether, HMPA/ -70°/1 hr	-	2,2'-Bipyridine (50)	99
34	C₀H ₇ N		LDA/ether, HMPA/ -70°/1 hr	-	2,2'-Biquinoline (74)	99
		CCN N	LDA/ether, HMPA/ -70°/1 hr	-	1,1'-Biisoquinoline (55)	99

TABLE XIII. Pyridine-N-Oxides (Alpha)

TABLE XIII. PYRIDINE-N-OXIDES (ALPHA) (Continued)

BuLi/THF/-65° COz 4,5-Dimethylpicolinic acid 1-oxide (18)

TABLE XIII. PYRIDINE-N-OXIDES (ALPHA) (Continued)

TABLE XIV.	PYRIMIDINES	(ALPHA)
------------	-------------	---------

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C ₅ H ₆ N ₂	N CH3	LDA/ether/ 0°-35°/1 hr	(C ₆ H ₅) ₂ CO	$\bigvee_{C(C_6H_5)_2OH}^{CH_3} (30)$	99
C ₈ H ₆ N ₄		LDA/THF/ - 70°-0°		$\left(\begin{array}{c} N \\ N \\ N \\ N \\ N \\ \end{array}\right)_{2} \qquad (38),$	597
				$\begin{pmatrix} N & N \\ V & V \\ V & V \\ N & N \\ \end{pmatrix}_{2}^{2} (1) (12)$	597
$C_{16}H_{10}N_2$		LDA/THF/ -70°-20°	-	1 (16)	597

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C ₃ H ₆ O	CH2=CHOCH3	t-BuLi*	Cul	[CH2=C(OCH3)]2CuLi (-	-)	105
		t-BuLi/THF/ -65°-0°	СН3СН=СНСНО	CH ₂ =C(OCH ₃)X	X = CH(OH)CH=CHCH, (74)	104
		(a)	Cyclopentanone		X = (88)	104
					OH	
		- H	(CH ₃) ₂ C=CHCOCH ₃		$X = C(CH_{3})CH = C(CH_{3})_{7}$ (75)	104
			C.H.CHO		$X = CH(OH)C_{a}H_{3}$ (78)	104
			C.H.CN		$X = COC_4H_4$ (70)	104
			C ₆ H ₅ CO ₂ H		$X = COC_6H_5$ (62)	104
					OH	
			C.H.CH.COCH.		$X = C(CH_{\bullet})CH_{\bullet}C_{\bullet}H_{\bullet}$ (90)	104
			n-C+H+CHO (H+O*)	CH-COX	$X = CH(OH)C_{2}H_{2}-n$ (63)	104
			(CH ₃) ₂ C=CHCH ₂ Br (H ₃ O ⁺)		$X = CH_2CH = C(CH_3)_2$ (74) QH	104
			Cyclobexanone (H ₃ O ⁺)		X = (90)	104
			n-C ₈ H ₁₇ I (H ₃ O ⁺)	R OH	$X = C_8 H_{17} - n$ (80)	104
			n-C4HoCO2CH3	CH ₃ O CH ₂ CH ₂ OCH ₃	$R = n - C_4 H_9$ (82)	104, 56
		. 47	C2H3CH(CH3)CO2CH3		$R = CH(CH_3)C_2H_5$ (93)	563
			r-C4HoCO2CH3		$R = C_4 H_{0} - I$ (95)	563
			C6H5CO2CH3		$R = C_6 H_5$ (75)	563, 10

TABLE XV. ALKYL VINYL ETHERS AND ALLENIC ETHERS (ALPHA)

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
	C3H6O	CH2=CHOCH3	1-BuLi/THF/	CH ₃ CH=CHCO ₂ CH ₃	(CH ₃ CO) ₂ C(OH)CH=CH	CH ₃ (46)	104
	(Conta.)		-03-47	C ₆ H ₃ COCH ₂ Br	3,4-Dihydroxy-3-phenyl-2-	butanone (58)	104
			1-BuLi/THF/	(H_3O^+) $(i-C_4H_9)_3B(H_3O^+,$	CH ₃ C(OH)R ₂	R=C4Ho-i (77)	598
			-80°	H₂O₂, OH [¬]) (s-C₄H9)₃B (H₃O ⁺ , H₂O₂, OH [¬])		$R = C_4 H_{g-5}$ (92)	598
						R=-((ś7)	598
144				(H ₃ O ⁺ , H ₂ O ₂ ,OH ⁺)			
						$\mathbf{R} = - (94)$	598
				(H ₃ O ⁺ , H ₂ O ₂ , OH [−])			
				$(n-C_6H_{13})_3B (H_3O^*, H_2O_2, OH^-)$		$R = C_6 H_{13} \cdot n$ (100)	598
		1	1-BuLi/THF/ - 65°-0°	Estrone methyl ether	3-O-Methyl-17α(α-methoxy	vinyl)estra-3,17β-diol (83)	365, 104
		- Ca			a	and the	
	C4H3CIO	Los	BuLi/THF/ -78°	СН,І	Col x	X = CH ₃ (74)	266
				CH3COCI		$\mathbf{X} = \begin{array}{c} & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $	266
				n-C4H9I		CH_3 $\dot{O}Ac$ $X = C_4H_{q}$ -n (62)	266
	C₄H₀O	сн₂=с=сносн₃	BuLi/THF, ether/	CH3COCH3CI	CH2=C=C(OCH3)X	X = CH ₃ (50-75)	599
			BuLi/THF, ether/	n-C ₃ H ₇ Br		$X = C_3 H_7 - n$ (47)	108a
			-20710 min	n-C3H7I		$\mathbf{X} = \mathbf{C}_3 \mathbf{H}_{7} \mathbf{n} (51)$	108a
			BuLi/THF, ether/ - 40°/45 min	CH3COCH(CH3)CI		$X = CH_3 O CH_3 (50-75)$	5) 599
			BuLi/THF, ether/	n-C₄H₀Br		$X = C_4 H_q - n (67)$	108a
145			- 20°/10 min BuLi/THF, ether/ - 40°/45 min	CH ₃ COC(CH ₃) ₂ Cl		$X = CH_3 O^{(CH_3)_2}$ (50-7)	5) 599
				ℓ-C₄H₀COCH₂Cl		$X = 1 - C_4 H_9 $ (50-75)	599
			BuLi/l'HF, ether/ -20°/10 min	C ₆ H ₅ CH ₂ Br		$X = CH_2C_6H_5 (64)$	108a
			BuLi/THF, ether/ -40°/45 min	C ₆ H ₅ COCH ₂ Cl		$X = C_6 H_5 \ 0 \ (50-75)$	599
		20	r-BuLi/ - 78°-5°/	(CH ₃) ₂ C=CHCH ₂ Br	Lol x	$X = CH_2CH = C(CH_3)_2$ (67)	576
		CH 0 001	0.5 m	n-C ₆ H ₁₃ I		$X = C_6 H_{13} \cdot n$ (64)	576
	C4H7ClO2	CH3 OCH2	s-BuLi/THF/ - 100°/0.5 hr	HgCl ₂	Bis[(Z)-2-chloro-1,2-dimeth	noxyvinyl]mercury (—)	600
		u	э́н!	CO2	(E)-3-Chloro-2,3-dimethox	yacrylic acid (45)	600

TABLE XV. ALKYL VINYL ETHERS AND ALLENIC ETHERS (ALPHA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C.H.O	CH2=CHOC2H3	r-BuLi/THF/ -65°-0°*	(CH ₃) ₂ SiHCl	CH2=C(OC2H3)X	$X = SiH(CH_3)_2 (44)$	601
		" t-BuLi/	(1-C4H9)2SiF2 C6H3CHO		$X = SiF(C_4H_9-t)_2 (50)$ $X = CH(OH)C_6H_5 (43)$	601 103
		TMEDA/ - 30°/40 min (-Bul i/THF/	(CH.)-SiCI	Acetyltrimethylsilane (31)		601
		-65°-0°	C H CHO	1 Hudson 1 shand 2 butson	/(())	104
	сн,сн=сносн,	I-BULI/IMEDA	C4A,CHU	1-Hydroxy-1-pnenyi-2-outanoi	16 (33)	104
C₅H ₇ ClO	Qu	BuLi/THF/25°/ 2 hr	CH ₃ 1	Q _x	X = CH ₃ (>65)	562
			C2H5I n-C4H9I	~	$X = C_2H_5$ (>65) $X = C_4H_9-n$ (>65)	562 562
C₅H₄O	\bigcirc	BuLi/THF/50°/ 1 hr	СНэ	G _x	X = CH ₃ (35)	562
		-0	n-C ₄ H ₉ I		$X = C_4 H_9 - n$ (35-75)	562
		t-BuLi/ pentane/ -78°-5°/0,5 hr	B r		X = (60)	576
		**	CH3CO(CH2)2CO2CH		$X = CH_1$ (68)	576
		BuLi/THF/50°/	n-C _s H ₁₃ 1		$X = C_6 H_{13} - n$ (75)	562, 5
C₅H₄O	CH2=CHCH=CHOCH3	1 hr t-BuLi/THF/ -65°-0°	C₀H₅CHO	1-Hydroxy-1-phenyl-3-buten-2	-one (30)	104
C6H10O2	СН,00	t-BuLi/ pentane/	Br	6-(2-Cyclohexen-1-yl)-3,4-dih	ydro-2-methoxypyran _, (52)	576
C ₁ H ₁₀ O	(CH ₃) ₂ C=C=C=CHOCH ₃	BuLi/ether/ - 30°/10 min	CH₂O	(CH ₃) ₂ C=C=C(OCH ₃)X	X = CH ₂ OH (55)	109
		н 0	CH ₃ CHO CH ₂ CCH		$X = CH(OH)CH_3$ (74) $X = C(CH_3)OH_3$ (71)	109
		- 0 -	C ₂ H ₃ COC ₂ H ₅		$X = C(C_2H_5)_2OH$ (68)	109
					OH	
			Cyclohexanone		X= (90)	109
	CH2=C(CH3)CH=C=CH-	BuLi/ether/	CH,COCH,	CH2=C(CH3)CH=C[C(CH3)2	DHJOCH _s (75)	109
C7H12O	OCH3 CH2=C=CHOC4H9-1	- 30%10 min LDCA/THF/ -55%15 min	n-C4H9I (H3O*)	2-Heptenal (80), 1-hepten-3-0	one (5)	108ь
C,H13O3	CH ₃ O CH ₃ O	/-BuLi/ pentane/ 0°/1-2 hr	(CH ₃) ₂ C—CHCH ₂ Br	3,4-Dihydro-2-methoxy-2-meth (3-methyl-2-butenyl)pyran (2	iyl-6- 57)	576
	OTHP			OTHP		
C4H14O2	CH ₃	*-BuLi,KOBu-1/ THF/-78°	CH ³ I	CH ₃ CH ₃ (83)		107
C ₉ H ₁₆ O	CH2=C=CHOC6H13-#	BuLi/ether/ - 35° to - 25°	D ₂ O	СH2=C=CDOC6H13-л ()		108a
C,H16O,	(C.H.O)	/-BuLi/	CH,COCH,	2,2-Diethoxy-3,4-dihydro-α, a	-	576

TABLE XV. ALKYL VINYL ETHERS AND ALLENIC ETHERS (ALPHA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
	C6H5 OCH	13		C6H5	OCH ₃	
C10HoLiO	C=C=C H	BuLi/ether/ - 75°/15 min	CH ₃ I,(CH ₃) ₃ SiCl	x c=c=c	Y	
				x	<u>Y</u>	
		BuLi/ether/ -75°	C ₂ H ₅ Br, —	CH₃ C₂H₃	Si(CH ₃) ₃ (78) H (87)	602 603
		Bul Vether/	CHB CHI	C ₆ H ₅	осн,	
		- 75°/15 min	child, cili	x	Y	
				X	Y (76)	602
		sie	C ₂ H ₃ Br, (CH ₂)-SiCl	C ₂ H ₅	Si(CH ₃) ₃ (82)	602
		9	(CH ₃ O) ₂ SO ₂ , (CH ₃ O) ₂ SO ₂	СН3	СН3 (70)	602
			(CH ₃) ₃ SiCl, CO ₂	Si(CH ₃) ₃	CO ₂ H (90)	603
			(CH ₃) ₃ SiCl, CH ₃ I	Si(CH ₃) ₃	CH ₃ (70)	602
			(CH ₃) ₃ SiCl, CH ₃ COCH ₃	Si(CH ₃) ₃	C(CH ₃) ₂ OH (80)	602
		Bul i/ether/	(CH ₃) ₃ SiCl, (CH ₃) ₃ SiCl	SI(CH ₃) ₃	SI(CH ₃) ₃ (80)	603
		-75°	n-C11601,	11-04119	11 (00)	
	n-C.H., OC	Эн.		n-CsH11	OCH.	
C10H18O	с=С=С н	BuLi/ether	CHal	C=C=	$C_{X} = CH_3$ (100)	36
		9	(CH ₃) ₃ SiCl		$X = Si(CH_3)_3$ (100)	36
	C6H5 OC2H5	D. T. L. L.		C.H.	OC2H5	
C11H11LIO	LINH	- 75°/15 min	(CH ₃) ₃ SiCl, (CH ₃) ₃ SiCl	(CH ₃) ₃ Si	Si(CH ₃) ₃	60
	n-CsH11 00	3H3		n-CsH1i	OCH3	2.
C12H24O4S	(CH ₃) ₃ Si H	BuLi/ether	C₂H₅Br	(CH ₃) ₃ Si	$X = C_2 H_s (61)$	360
		2	C2H3I		$\mathbf{X} = \mathbf{C}_2 \mathbf{H}_5 (70)$	360
		**	(CH ₃ O) ₂ SO ₂ (CH ₃) ₃ SiCl		$X = CH_3$ (100) $X = Si(CH_3)_3$ (78)	360

TABLE XV. ALKYL VINYL ETHERS AND ALLENIC ETHERS (ALPHA) (Continued)

N 60. n pp

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
	Br				
C ₄ H ₂ Br ₂ O	Br	LDA/THF or ether/-70°	(CH ₃) ₃ SiCl	(4,5-Dibromo-2-furyl)trimethylsilane ()	246
	Br			Br	
C ₄ H ₂ BrO	$\overline{\mathbb{Q}}$	LDA/THF/-80°/ 2.5 hr	CH₂O	$X = CH_2OH (52)$	566
		Ч.	CH,OCH2CI	$X = CH_2OCH_3 (49)$	566
		LDA/THF or	(CH ₃) ₃ SiCl	$\mathbf{X} = \mathrm{Si}(\mathbf{CH}_3)_3 ()$	246
	a	ether/-70° LDA/THF/-80°/ 2.5 hr	(CH ₃) ₂ C=CHCH ₃ Br	$X = CH_2CH = C(CH_3)_2 (66)$	566
C.H.CIO	d'	LDA/THF/-80°/ 2.5 br	(CH ₃) ₂ C=CHCH ₂ Br	3-Chloro-2-(3-methyl-2-butenyl)furan (41)	566
C.H.O	Ŏ	C _s H _s Li/ether	"S" + CH ₃ I	X=SCH ₃ (35)	292
		BuLi/ether/-35°-	"S"+C1H1	X = SC ₂ H ₅ (53)	361
		reflux/4 hr CeHsLi/ether	"S" + CHCHCH-Br	X-SCH-CH-CH-(70)	292
		77	"S"+Ac20	X=\$Ac (45)	292
			"S" + C6H3CH2CI	$\mathbf{X} = \mathbf{SCH}_2\mathbf{C}_5\mathbf{H}_5 (60)$	292
			"Se" + CH ₃ I	$\mathbf{X} = \mathbf{SeCH}_3 (49)$	292
		BuLi/ether/-20	"Se"+C ₂ H ₅ I	$\mathbf{X} = \mathbf{SeC_2H_5} (51)$	362
		C ₆ H ₅ Li/ether	"Se" + CH2=CHCH2Br	$\mathbf{X} = \mathbf{SeCH}_2\mathbf{CH} = \mathbf{CH}_2 (61)$	292
			"Se" + Ac2O	$\mathbf{X} = \mathbf{SeAc} (64)$	292
			36 TL6R5CR2CI	X = SecH2C6H3 (38)	292
		BuLi/ether/25°-	SO ₂	X = SO ₂ Li (55)	363
		BuLi/ether/-20°-	CO2	$X = CO_2 H$ (77)	112
		reflux/4 hr BuLi/THF/-15°/	CH ₃ 1	X=CH, (89)	566
		4 hr		$\mathbf{x} = C\mathbf{H}_{-}$ (36)	\$66
		4 hr	05-001		500
		EtLi/ether/25°	CCl ₃ CCl ₃	$X = CF = CCl_2 (33)$ X = Cl (48)	365
		BuLi/ether/20°/ 3 hr	Ethylene oxide	$X = (CH_2)_2 OH$ (57)	366
		BuLi/THF/-15%	Propylene	X = CH ₂ CH(OH)CH ₃ (98)	367, 30
ž		BuLi/ether/ reflux/3 hr	(CH ₃) ₃ SiCl	$\mathbf{X} = \mathrm{Si}(\mathbf{CH}_3)_3 (52)$	369
		-	(KMnO ₄)	X = $(-)$	370
		Bul i/sther/	Ac O	N N	
		reflux/4 hr	11/20	x=coch ₅ (20)	3/1
		BuLi/THF/-15°/ 6.5 hr	C ₂ H ₅	$\mathbf{X} = \mathbf{CH}_{3}\mathbf{CH}(\mathbf{OH})\mathbf{C}_{2}\mathbf{H}_{3} (85)$	367
		BuLi BuLi/ether/-20°-	ClB[N(CH ₃) ₂] ₂ (CH ₃) ₂ CHCHO	$X = B[N(CH_3)_2]_2$ (15) $X = CH(OH)CH(CH_3)_2$ (93)	295 112
		renux/4 hr	CH₃COC₂H₅	X = C(CH ₃)C ₂ H ₅ (88) OH	112

TABLE XVI. FURANS (ALPHA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C4H4O (Contd.)		•	CH₃CO₂C₂H₅	⟨₀↓ _x	$X = \underbrace{OH}_{CH_3}^{(94)}$	112
		BuLi/THF/-25° to -15°/4hr	n-C₄H₀Br		$\mathbf{X} = \mathbf{C}_4 \mathbf{H}_{\mathbf{v}} \cdot \mathbf{n} (77)$	112
		BuLi/THF/-15°/	(CH ₃) ₂ C=CHCHO		$X = CH(OH)CH = C(CH_3)_2$	566
		4 hr "	(CH ₃) ₂ C=CHCH ₂ Br		(79) $X = CH_2CH = C(CH_3)_2$ (76) OH	566
		BuLi/ether/-20°- reflux/4 hr	Cyclohexanone		X = (95)	112
		BuLi/THF/-15%	BrCH ₂ CH(OC ₂ H ₅) ₂		$X = CH_2CH(OC_2H_3)_2$ (70)	367
		6 hr BuLi/ether/-20°- reflux/4 hr	C ₆ H₅CN (H₃O*)		$X = COC_6H_5$ (89)	112
		BuLi/ether/-20°- reflux/4 hr	C₄H₅CHO		$X = CH(OH)C_6H_3$ (98)	112
		ω.	C ₆ H ₅ COCH ₃			112
		2	C₅H₅CO₂C₂H₅		$X = \bigcup_{\substack{O \\ C_sH_s}}^{OH} (44)$	112
		EtLi/ether/-40°- reflux/0.5 hr	(n-C₄H₀O)₃B (H₃O ⁺)		$\mathbf{X} = \mathbf{B}(\mathbf{OH})_2 (55)$	115
		BuLi/ether/-20°- reflux/4 hr	(C ₆ H ₅) ₂ CO	CHOU	$\mathbf{X} = \mathbf{C}(\mathbf{C}_{6}\mathbf{H}_{5})_{2}\mathbf{O}\mathbf{H} (98)$	112
		BuLi	OCH2C6H3		OCH ₂ C ₆ H ₅ 0 (30–36)	372
		3 BuLi/ether/ reflux/4 hr	D ₂ O	2,5-d ₂ -Furan (80)	\checkmark	373
		BuLi/ether		(() 1+CI- (35)		374
		C ₆ H ₅ Li/ether/1 hr	PBra	Tri-2-furylphosphine (33)	296
		BuLi/hexane, TMEDA/reflux/ 0.5 hr	OO_2 (CH ₂ N ₂)	Methyl furan-2-carboxylau dimethyl furan-2,5-dica	e (68) te (I) (9), rboxylate (II) (91)	40
		BuLi/ether, TMEDA/reffux/		1 (33), 11 (55)		40
H₄O	0	0.5 hr BuLi/ether/ reflux/2.5 hr	"S"	2	X = SH (40)	497
	O CH3	BuLi/ether/-35°- reflux/4 hr	"S"+C ₂ H ₅ I	CH3 '0' 'X	$X = SC_2H_5$ (77)	361
		BuLi/ether/-20°- reflux	"S"+CICH2CO2CH3		$X = SCH_2CO_2CH_3$ (51)	362

TABLE XVI. FURANS (ALPHA) (Continued)

TABLE XVI. FURANS (ALPHA) (Continued)

Form	ula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C ₇ H ₈ (Cont	103 1d.)	J.S.	Nex .	(H ₃ O ⁺)	$\mathbf{X} = \mathbf{CO} \mathbf{S} \mathbf{S} $ (30)	113
			" BuLi/ether/ -30°-25°/0.5 hr	С ₆ H ₅ CON(CH ₃) ₂ (H ₃ O ⁺) (л-C ₄ H ₉ O) ₃ B (H ₃ O ⁺)	$X = COC_6H_3$ (61) $X = B(OH)_2$ (36)	113 115, 11
C ₇ H ₁₀	LiNO2	CH(OLi)N(CH ₃) ₂	EtLi/ether/ reflux/2 hr	(n-C4H9O)3B (H3O*)	(32) (32)	114, 11
C7H10	O ₂	CH2CH(CH3)OH	BuLi/THF/-15°/ 6 hr	Ethylene oxide	5-[2-Hydroxyethyl]-a-methyl-2-furanethanol (80)	367
C,H12	POSi	Si(CH ₃) ₃	BuLi/ether/ reflux/4 hr	COz	5-(Trimethylsilyl)-2-furoic acid (62)	369
C₀Hıı	NO ₂	CCH ₃) ₂	BuLi/THF/-70°/ 1 hr	С₅Ӊ₅СНО	$(49) (CH_3)_2 \cdot X = CH(OH)C_4H_5$	377
C _p H ₁₄	03	CH(OC,Ha)	BuLi/ether/-10°- 25°/4 hr	D ₂ O	(C H O) CH O X=D (93)	297
			9 4 17	(CH ₃) ₃ SiCl (CH ₃) ₃ C ₂ H ₃ SiCl (CH ₃) ₃ SiCH ₃ Cl	$ \begin{array}{c} X = Si(CH_3)_3 (80) \\ X = SiC_2H_3(CH_3)_2 (78) \\ X = CH_2Si(CH_3)_3 (33) \end{array} $	297 297 297
			3	(C2H3)3SiCl (CH3)2C6H3SiCl (C2H3)2C6H3SiCl	$X = Si(C_2H_5)_3 (69)$ $X = SiC_6H_5(CH_3)_2 (80)$ $X = SiC_6H_3(C_2H_5)_2 (80)$	297 297 297
			÷	сн, сн,	$\mathbf{X} = \left(\begin{array}{c} \mathbf{C} \mathbf{H}_3 \\ \mathbf{C} \mathbf{H}_3 \end{array} \right) \left(\begin{array}{c} \mathbf{C} \mathbf{I} \mathbf{O}_4 \\ \mathbf{C} \mathbf{H}_3 \end{array} \right) \left(\begin{array}{c} \mathbf{C} \mathbf{O}_4 \\ \mathbf{C} \mathbf{O}_4 \end{array} \right) \left(\begin{array}{c} \mathbf{C} $	375
			BuLi/ether/-10°-	(HClO₄) CO₂ (H₁O*)	5-Formyl-2-furoic acid (80)	297
			25°/4 hr	$C_6H_5CN(H_3O^+)$	5-Benzoyl-2-furaldehyde (48)	297
			EtLi/ether/-40°- 25°/2 hr	(n-C4H2O)3B (H3O ⁺)	OHC B(OH)2 (33)	115
C10H1	4 0 3	(CH ₃) ₂	Buli	(C ₆ H ₅) ₂ CO	$HO(C_6H_5)_2C$ O O $(CH_3)_2$ (67)	378
C10H1	₆ O3	CH2CH(OC2H5)2	BuLi/THF/-15°/ 6 hr	Propylene oxide	C ₂ H ₅ O CH ₂ CH(CH ₃)OH (37)	367
C _{in} H _i	16 O 3	CH.)	BuLi	DMF	OHC O CH ₃ (-)	379
C12H1	10 ⁰ 3		BuLi/THF/-15°/ IP 4 hr	CH ₂ =CHCH₂Br	CH_=CHCH ₂ CH,CH(CH,)OTHP (37)	367

TABLE XVI. FURANS (ALPHA) (Continued)

Note: References 360-607 are on pp. 355-360.

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C ₈ H ₅ ClO	a CCO	BuLi/ether/ reflux/2 hr	D2O	5-Chloro-2- <i>d</i> -benzofuran (—)	380
		BuLi	Ethylene oxide	5-Chloro-2-(2-hydroxyethyl)- benzofuran (45-62)	116
C ₈ H ₆ O	$\langle \rangle$	BuLi/ether/	D ₂ O	X = D (70)	381, 380
		BuLi/ether/ -10°/1 hr	CO2	$X = CO_2 H (70)$	479
		"	CH ₃ I	$X = CH_3$ (63)	479
		BuLi/ether/	Ethylene oxide	$X = (CH_2)_2OH$ (45)	382, 116
		BuLi/ether/ -10°/1 hr	DMF	X=CHO (70)	479
C₂H₅O	CH ³	BuLi	Ethylene oxide	2-(2-Hydroxyethyl)-5-methyl- benzofuran (45-62)	116
C ₉ H ₈ O ₂	CH ₃ O	BuLi	Ethylene oxide	2-(2-Hydroxyethyl)-5-methoxy- benzofuran (45–62)	116
C ₁₂ H ₈ O	90	BuLi/ether/ reflux/10 min	DMF	(45)	278

TABLE XVII. CONDENSED FURANS (ALPHA)

TABLE XVIII. OXAZOLES AND OXAZOLINES (ALPHA)

Formula	Compound lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C3H9NO	(CH3)2 N	BuLi/THF	D ₂ O	2-d-4,4-Dimethyl-2-oxazoline (99)	119
		BuLi/THF/-60°	D2O	2-d-5-Phenyloxazole (96)	118
C₀H ₇ NO	C ₆ H ₅	BuLi	С₄Н₃СНО	a,5-Diphenyl-2-oxazolemethanol ()	383
C,H,NO	C ₆ H ₃ N	BuLi/THF/-70°/ 10 min	CH₃OD	2-d-5-Phenyl-2-oxazoline (—)	120
C15H11NC	C _e H _s O C _e H _s N	BuLi/THF/-60°	D20	2-d-4,5-Diphenyloxazole (95)	118
		•	С₅Н₅СНО	a,4,5-Triphenyl-2-oxazolemethanol (67)	118
C15H13NC	C ₆ H, N	BuLi/THF/-70°/ 10 min	C ₆ H ₅ CHO	α,4,5-Triphenyl-2-oxazoline-2-methanol (58)	120

Note: References 360-607 are on pp. 355-360.

C ₄ H ₄ S CH ₂ =CHSC ₃ H ₃ C ₆ H ₄ S ₄ $\begin{pmatrix} S \\ S \\ S \\ S \\ C_6H_{10}S \end{pmatrix}$ CH ₃ CH ₃ CH=C=CHSC ₂ H ₃ C ₆ H ₁₀ S ₂ $\begin{pmatrix} C_2H_3 \\ SCH_3 \end{pmatrix}$ C ₆ H ₁₀ S ₂ $\begin{pmatrix} C_2H_3 \\ SCH_3 \end{pmatrix}$ C ₆ H ₁₀ S ₂ $\begin{pmatrix} C_2H_3 \\ SCH_3 \end{pmatrix}$ C ₆ H ₁₀ S ₂ $\begin{pmatrix} C_2H_3 \\ SCH_3 \end{pmatrix}$	s-BuLi/THF, HMPA/ -78°/0.5 hr " " BuLi CH3Li/ether BuLi/THF, TMEDA/-40° BuLi/THF, TMEDA, HMPA/25° " LDA/THF/-80°/ 10 min " BuLi, pet. ether/ 25°/3.5 hr	Br(CH ₂) ₃ Br (HgCl ₂) Br(CH ₂) ₄ Br (HgCl ₂) C ₄ H ₄ CHO (HgCl ₂) Styrene oxide (HgCl ₂) n-C ₈ H ₁₇ Br (HgCl ₂) n-C ₈ H ₁₇ CHO (HgCl ₂) CO ₂ CH ₂ O CH ₂ O CH ₃ I H ₂ O CH ₃ I CH ₃ O CH ₃ SO ₃ F (CH ₃ SO ₃ F (CH ₃ SC) ₂ C ₈ H ₃ CHO	3-Methyl-2-cyclohexen CH ₃ COX (1,3-Dithiol-2-ylidene)- 4-carboxvlic acid (5 CH ₃ CHC = CSC ₂ H ₃ (1) CH ₂ OH CH ₃ CH=C=C(SC ₂ H ₃) (1+II, 75) (1:II, 3:2) 1,4-Bis (methylthio)-1,3 2-(Methylthio)thiophene 2-Methyl-5-(methylthio) C ₂ H ₅ S SC ₂ H ₅ X	$x = (CH_3)_4COCH_3 (60) X = CH(OH)C_6H_5 (64) X = CH = CHC_6H_5 (68) X = C_8H_{17}-n (90) X = CH(OH)C_8H_{17}-n (58) -1,3-dithiole- 56) ,,)CH_2OH (11) 3-pentadiene (96) e (75-80))thiophene (75-80) X = D (85) X = CH_3 (68) X = SCH_3 (100) X = CH(OH)C_6H_5 (87) (00) (0) (0) (0)$	121 121 121 121 121 121 121 121 121 121
$C_{0}H_{10}S \qquad (J_{S} + J_{S})$ $C_{0}H_{10}S \qquad CH_{3}CH_{3}C-CHSC_{2}H_{3}$ $C_{0}H_{10}S_{2} \qquad (J_{S} - SC)H_{3}$ $C_{0}H_{10}S_{2} \qquad (C_{2}H_{3}S) = SC_{2}H_{3}$ $C_{0}H_{10}S_{2} \qquad (C_{2}H_{3}S) = SC_{2}H_{3}$ $C_{0}H_{10}S_{2} \qquad (C_{2}H_{3}S) = SC_{2}H_{3}$	" " " " " " " " " " " " " " " " " " "	Br(CH ₂) ₄ Br (HgCl ₂) C ₆ H ₄ CHO (HgCl ₂) Styrene oxide (HgCl ₂) n-C ₈ H ₁₇ Br (HgCl ₂) n-C ₈ H ₁₇ CHO (HgCl ₂) CO ₂ CH ₂ O CH ₂ O CH ₃ I H ₂ O CH ₃ I CH ₃ I CH ₃ OD CH ₃ SO ₃ F (CH ₃ SO ₃ F (CH ₃ SC) ₂ C ₈ H ₅ CHO	CH ₃ COX (1,3-Dithiol-2-ylidene)- 4-carboxvlic acid (5 CH ₃ CHC = CSC ₂ H ₃ (1) CH ₂ OH CH ₃ CH=C=C(SC ₂ H ₃) (1+II, 75) (1:II, 3:2) 1,4-Bis (methylthio)-1,3 2-(Methylthio)thiophene 2-Methyl-5-(methylthio) C ₂ H ₅ S SC ₂ H ₅ X	$X = (CH_3)_4COCH_3 (60)$ $X = CH(OH)C_6H_5 (64)$ $X = CH = CHC_6H_5 (68)$ $X = C_8H_{17}-n (90)$ $X = CH(OH)C_8H_{17}-n (58)$ -1,3-dithiole- 56) 0, 0)CH_2OH (11) 3-pentadiene (96) e (75-80) 0)thiophene (75-80) $X = D (85)$ $X = CH_3 (68)$ $X = SCH_3 (100)$ $X = CH(OH)C_8H_5 (87)$	121 121 121 121 121 121 121 121 121 122 130 605 605 605 605 128 128 128 128
$C_{0}H_{4}S_{4} \qquad \qquad$	" " " " " " " " " " " " " " " " " " "	C ₈ H ₃ CHO (HgCl ₂) Styrene oxide (HgCl ₂) n-C ₈ H ₁₇ Br (HgCl ₂) n-C ₈ H ₁₇ CHO (HgCl ₂) CO ₂ CH ₂ O CH ₂ O CH ₃ I H ₂ O CH ₃ I CH ₃ O CH ₃ SO ₃ F (CH ₃ SO ₃ F (CH ₃ SC) ₂ C ₈ H ₅ CHO	(1,3-Dithiol-2-ylidene)- 4-carboxvlic acid (S CH ₃ CHC = CSC ₂ H ₃ (I) CH ₂ OH CH ₃ CH=C=C(SC ₂ H ₃) (I + II, 75) (I : II, 3 : 2) 1,4-Bis (methylthio)-1,3 2-(Methylthio)thiophene 2-Methyl-5-(methylthio) C ₂ H ₅ S SC ₂ H ₅ X	$X = CH(OH)C_{6}H_{5} (64)$ $X = CH = CHC_{6}H_{5} (68)$ $X = C_{8}H_{17}-n (90)$ $X = CH(OH)C_{8}H_{17}-n (58)$ -1,3-dithiole- 56) 0, 0)CH_{2}OH (11) 3-pentadiene (96) e (75-80) 0)thiophene (75-80) $X = D (85)$ $X = CH_{3} (68)$ $X = SCH_{3} (100)$ $X = CH(OH)C_{6}H_{5} (87)$	121 121 121 121 162 130 605 605 605 128 128 128 128
$C_{0}H_{10}S_{1} \qquad \qquad$	" " " " " " " " " " " " " " " " " " "	Styrene oxide (HgCl ₂) n-C ₈ H ₁₇ Br (HgCl ₂) n-C ₈ H ₁₇ CHO (HgCl ₂) CO ₂ CH ₂ O CH ₂ O CH ₃ I H ₂ O CH ₃ I CH ₃ I CH ₃ OD CH ₃ SO ₃ F (CH ₃ SO ₂ F (CH ₃ S) ₂ C ₈ H ₃ CHO	(1,3-Dithiol-2-ylidene)- 4-carboxvlic acid (5 CH ₃ CHC = CSC ₂ H ₅ (1) CH ₂ OH CH ₃ CH=C=C(SC ₂ H ₅) (1+II, 75) (1:II, 3:2) 1,4-Bis (methylthio)-1,3 2-(Methylthio)thiophene 2-Methyl-5-(methylthio) C ₂ H ₅ S SC ₂ H ₅ X	$X = CH = CHC_{6}H_{5} (68)$ $X = C_{8}H_{17}-n (90)$ $X = CH(OH)C_{8}H_{17}-n (58)$ -1,3-dithiole- 56) 9, 0)CH_{2}OH (11) 3-pentadiene (96) e (75-80) 0)thiophene (75-80) $X = D (85)$ $X = CH_{3} (68)$ $X = SCH_{3} (100)$ $X = CH(OH)C_{6}H_{5} (87)$	121 121 121 162 130 605 605 605 128 128 128 128
$C_{a}H_{a}S_{a} \qquad \qquad$	" " " " " " " " " " " " " " " " " " "	n-C ₈ H ₁₇ Br (HgCl ₂) n-C ₈ H ₁₇ CHO (HgCl ₂) CO ₂ CH ₂ O CH ₂ O CH ₃ I H ₄ O CH ₃ I CH ₃ OD CH ₃ SO ₃ F (CH ₃ SO ₂ F (CH ₃ S) ₂ C ₈ H ₃ CHO	(1,3-Dithiol-2-ylidene)- 4-carboxvlic acid (5 CH ₃ CHC = CSC ₂ H ₅ (1) CH ₂ OH CH ₃ CH=C=C(SC ₂ H ₃) (1+II, 75) (1:II, 3:2) 1,4-Bis (methylthio)-1,3 2-(Methylthio)thiophene 2-Methyl-5-(methylthio) C ₂ H ₅ SC ₂ H ₅ X	$X = C_8 H_{17} - n (90)$ $X = CH(OH)C_8 H_{17} - n (58)$ -1,3-dithiole- 56) ,),)CH ₂ OH (II) 3-pentadiene (96) e (75-80))thiophene (75-80) $X = D (85)$ $X = CH_3 (68)$ $X = SCH_3 (100)$ $X = CH(OH)C_8 H_5 (87)$	121 121 162 130 605 605 605 128 128 128 128
$C_{a}H_{a}S_{a} \qquad \qquad$	" BuLi L, CH,Li/ether BuLi/THF, TMEDA/-40° BuLi/THF, TMEDA, HMPA/25° " LDA/THF/-80°/ 10 min " HBuLi/THF/ -80°/10 min " BuLi, pet. ether/ 25°/3.5 hr	n-C ₈ H ₁₇ CHO (HgCl ₂) CO ₂ CH ₂ O CH ₃ I H ₄ O CH ₃ I CH ₃ OD CH ₃ SO ₃ F (CH ₃ SO ₂ F (CH ₃ S) ₂ C ₈ H ₃ CHO	(1,3-Dithiol-2-ylidene)- 4-carboxvlic acid (5 CH ₃ CHC = CSC ₂ H ₅ (1) CH ₂ OH CH ₃ CH=C=C(SC ₂ H ₃) (1+II, 75) (1:II, 3:2) 1,4-Bis (methylthio)-1,3 2-(Methylthio)thiophene 2-Methyl-5-(methylthio) C ₂ H ₅ S SC_2H_5 X	$X = CH(OH)C_8H_{17}-n$ (58) -1,3-dithiole- 56)),)CH ₂ OH (II) 3-pentadiene (96) e (75-80))thiophene (75-80) X = D (85) $X = CH_3$ (68) $X = SCH_3$ (100) $X = CH(OH)C_8H_5$ (87)	121 162 130 605 605 605 128 128 128 128
$C_{6}H_{4}S_{4} \qquad \qquad$	BuLi BuLi/THF, TMEDA/-40° BuLi/THF, TMEDA, HMPA/25° " LDA/THF/-80°/ 10 min " " BuLi/THF/ -80°/10 min " BuLi, pet. ether/ 25°/3.5 hr	CO ₂ CH ₂ O CH ₃ I H ₄ O CH ₃ I CH ₃ OD CH ₃ SO ₃ F (CH ₃ SO ₃ F (CH ₃ S) ₂ C ₆ H ₃ CHO	(1,3-Dithiol-2-ylidene)- 4-carboxvlic acid (5 CH ₃ CHC = CSC ₂ H ₅ (1) CH ₂ OH CH ₃ CH=C=C(SC ₂ H ₃) (1+II, 75) (1:II, 3:2) 1,4-Bis (methylthio)-1,3 2-(Methylthio)thiophene 2-Methyl-5-(methylthio) C ₂ H ₅ S SC_2H_5 X	-1,3-dithiole- 56)),)CH ₂ OH (II) 3-pentadiene (96) e (75-80))thiophene (75-80) X = D (85) $X = CH_3$ (68) $X = SCH_3$ (100) $X = CH(OH)C_8H_5$ (87)	162 130 605 605 128 128 128 128 128
C ₆ H ₁₀ S CH ₃ CH=C=CHSC ₂ H C ₆ H ₁₀ S ₂ C_2 H ₅ S C ₆ H ₁₂ S ₂ C ₂ H ₅ S SC ₂ H ₅ C ₆ H ₁₂ S ₂ C ₂ H ₅ S	LDA/THF, TMEDA/-40° BuLi/THF, TMEDA, HMPA/25° " LDA/THF/-80°/ 10 min " '-BuLi/THF/ -80°/10 min " BuLi, pet_ ether/ 25°/3.5 hr	CH ₂ O CH ₃ I H ₂ O CH ₃ I CH ₃ OD CH ₃ SO ₃ F (CH ₃ S) ₂ C ₈ H ₅ CHO	CH ₃ CHC = CSC ₂ H ₅ (I) CH ₂ OH CH ₃ CH=C=C(SC ₂ H ₅) (I + II, 75) (I: II, 3: 2) 1,4-Bis (methylthio)-1,3 2-(Methylthio)thiophene 2-Methyl-5-(methylthio) C ₂ H ₅ S SC ₂ H ₅ X),)CH ₂ OH (11) 3-pentadiene (96) e (75-80)))thiophene (75-80) X = D (85) X = CH ₃ (68) X = SCH ₃ (100) X = CH(OH)C ₆ H ₅ (87)	130 605 605 128 128 128 128
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BuLi/THF, TMEDA/-40° BuLi/THF, TMEDA, HMPA/25° " LDA/THF/-80°/ 10 min " '-BuLi/THF/ -80°/10 min " BuLi, pet_ ether/ 25°/3.5 hr	CH ₃ I H ₂ O CH ₃ I CH ₃ OD CH ₃ SO ₃ F (CH ₃ S) ₂ C ₈ H ₃ CHO	CH ₂ OH CH ₂ OH CH ₃ CH=C=C(SC ₂ H ₃) (1+II, 75) (1:II, 3:2) 1,4-Bis (methylthio)-1,3 2-(Methylthio)thiophene 2-Methyl-5-(methylthio) C ₂ H ₅ S SC ₂ H ₅ X	<pre>'')CH₂OH (11) 3-pentadiene (96) e (75-80)))thiophene (75-80) X = D (85) X = CH₃ (68) X = SCH₃ (100) X = CH(OH)C₆H₅ (87)</pre>	605 605 605 128 128 128 128
C ₆ H ₁₀ S ₂ C ₆ H ₁₀ S ₂ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ SC ₂ H ₅ SC ₂ H ₅ C ₂ H ₅ SC ₂ H ₅	BuLi/THF, TMEDA/-40° BuLi/THF, TMEDA, HMPA/25° " LDA/THF/-80°/ 10 min " '-BuLi/THF/ -80°/10 min " BuLi, pet_ether/ 25°/3.5 hr	CH ₃ I H ₂ O CH ₃ I CH ₃ OD CH ₃ SO ₃ F (CH ₃ S) ₂ C ₈ H ₃ CHO	1,4-Bis (methylthio)-1,3 2-(Methylthio)thiophene 2-Methyl-5-(methylthio) C_2H_5S C_2H_5S X	3-pentadiene (96) e (75-80) s)thiophene (75-80) X = D (85) X = CH ₃ (68) X = SCH ₃ (100) X = CH(OH)C ₆ H ₅ (87)	605 605 128 128 128 128 128
C_2H_5 SC_2H_5 $C_6H_{13}S_2$ C_8H_8S $CH_2=CHSC_8H_5$	BuLi/THF, TMEDA, HMPA/25° " LDA/THF/-80°/ 10 min " '-BuLi/THF/ -80°/10 min " BuLi, pet. ether/ 25°/3 5 hr	H ₄ O CH ₃ I CH ₃ OD CH ₃ SO ₃ F (CH ₃ S) ₂ C ₆ H ₃ CHO	2-(Methylthio)thiophene 2-Methyl-5-(methylthio) C ₂ H ₅ S SC ₂ H ₅ X	e $(75-80)$ w)thiophene $(75-80)$ X = D (85) $X = CH_3$ (68) $X = SCH_3$ (100) $X = CH(OH)C_6H_5$ (87)	605 605 128 128 128 128
C_2H_5 SC_2H_5 $C_6H_{12}S_2$ C_6H_4S $CH_2=CHSC_6H_5$	" LDA/THF/-80°/ 10 min '-BuLi/THF/ -80°/10 min " BuLi, pet_ ether/ 25°/3.5 hr	CH ₃ I CH ₃ OD CH ₃ SO ₃ F (CH ₃ S) ₂ C ₆ H ₃ CHO	2-Methyl-5-(methylthio) C ₂ H ₅ S SC ₂ H ₅ X	()thiophene (75-80) X = D (85) $X = CH_{3}$ (68) $X = SCH_{3}$ (100) $X = CH(OH)C_{6}H_{5}$ (87)	605 128 128 128 128
C_2H_5 SC_2H_5 $C_6H_{12}S_2$ C_8H_8S $CH_2=CHSC_6H_5$	LDA/THF/-80°/ 10 min " '-BuLi/THF/ -80°/10 min " BuLi, pet. ether/ 25°/3.5 hr	CH3OD CH3SO3F (CH3S)2 C6H3CHO	C ₂ H ₅ S X	X = D (85) $X = CH_3$ (68) $X = SCH_3$ (100) $X = CH(OH)C_6H_5$ (87)	128 128 128 128
C ₆ H ₁₃ S ₂ C ₆ H ₄ S C ₈ H ₆ S CH ₂ =CHSC ₆ H ₅	LDA/THF/-80°/ 10 min " '-BuLi/THF/ -80°/10 min " BuLi, pet. ether/ 25°/3.5 hr	CH ₃ OD CH ₃ SO ₃ F (CH ₃ S) ₂ C ₆ H ₃ CHO	-1-3-	X = D (85) $X = CH_3$ (68) $X = SCH_3$ (100) $X = CH(OH)C_6H_5$ (87)	128 128 128 128
C ₈ H ₆ S CH ₂ =CHSC ₆ H ₅	10 min 10 min	CH ₃ SO ₃ F (CH ₃ S) ₂ C ₆ H ₃ CHO	×	$X = CH_{3}$ (68) $X = SCH_{3}$ (100) $X = CH(OH)C_{6}H_{5}$ (87)	128 128 128
CaHaS CH2=CHSCaH5	" '-BuLi/THF/ -80°/10 min " BuLi, pet. ether/ 25°/3.5 hr	CH ₃ SO ₃ F (CH ₃ S) ₂ C ₆ H ₅ CHO	^	$X = CH_s$ (68) $X = SCH_s$ (100) $X = CH(OH)C_6H_s$ (87)	128 128 128
C ₆ H ₈ S CH ₂ =CHSC ₆ H ₅	f-BuLi/THF/ -80°/10 min " BuLi, pet. ether/ 25°/3.5 hr	(CH ₃ S) ₂ C ₆ H ₃ CHO		$X = CH_3$ (08) $X = SCH_3$ (100) $X = CH(OH)C_6H_5$ (87)	128
CeHeS CH2=CHSCeH2	-80°/10 min " BuLi, pet. ether/ 25°/3.5 hr	С,н,сно		$X = CH(OH)C_{e}H_{s} (87)$	128
CeHeS CH2=CHSCeH5	" BuLi, pet. ether/ 25%3.5 hr	Сензсно		X = CH(OH)C ₆ H ₅ (87)	128
C ₈ H ₈ S CH ₂ =CHSC ₆ H ₅	BuLi, pet. ether/ 25%3.5 hr	au.			
	LDA/THF/-78°	(CH ₃ S) ₂ (CH ₃) ₃ SiCl C ₈ H ₃ SeBr n-C ₃ H ₁₁ CHO	Methyl phenyl sulfide isopropenyl phenyl s CH ₂ =C(SC ₅ H ₄)X	(21), sulfide (53) $X = SCH_3$ (61) $X = Si(CH_3)_3$ (97) $X = SeC_6H_5$ (84) $X = CH(OH)C_5H_{11}-n$ (76)	384 125 125 125 124
	-60°/0.5 hr	(C H S)		X-SC.H. (50)	170
	EDA/IIII/=/6	(n-C4H4),SnCl		$X = Sn(C_{0}H_{0}-n)_{1}$ (87)	123
C ₀ H ₁₀ S C ₀ H ₃ CH=CHSCH ₃	s-BuLi/THF, HMPA/ -78°/0.5 hr	Propylene oxide (HgCl) ₂	C ₆ H ₅ CH ₂ COX	X = CH=CHCH ₃ (57)	121
	*	C ₆ H ₅ CHO (HgCl) ₂		$X = CH(OH)C_6H_5 (54)$	121
		n-C _B H ₁₇ Br (HgCl ₂)		$X = C_n H_{17} \cdot n$ (65)	121
C2H5O	and the second second	1000	C2H5Q X	and the second	200
C ₉ H ₁₈ OS	1-BuLi/THF/	n-C4HoBr	-	$\mathbf{X} = \mathbf{C}_{\mathbf{+}}\mathbf{H}_{9} \cdot \mathbf{n} (42)$	127
SC ₅ H ₁₁ -	-n		SC ₅ H ₁₁	1-n	
61	P	m-CaHol		$X = C_4 H_9 - n$ (60)	127
		n-C ₆ H ₁ ,CHO C ₆ H ₅ CHO		$X = CH(OH)C_6H_{13}-n$ (82) $X = CH(OH)C_6H_5$ (80)	127 127
C,H,O		110710	C ₂ H ₅ O X	C. HOWL WITH AND	
C10H12OS	t-BuLi/THF/-70ª/	D ₂ O		X = D (95)	127
SC ₆ H ₅	1 hr		SC6H5		
		Ethylene		$X = (CH_2)_2 OH$ (60)	127
	15	Propylene		$X = CH_2CH(OH)CH_3$ (55)	127
		n-CaHol		$X = C_4 H_{e^-} n$ (55)	127
		СН,СН=СНСНО		$X = CH(OH)CH=CHCH_3$	127
	m	Cyclopentanone		X = HO (78)	127
		C IL CILO		in the second second	107

TABLE XIX.	VINYL SULFIDES AND ALLENIC THIOETHERS (ALPHA)	

Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs
C2H5O SC6H3	Ű.	n-C ₆ H ₁₃ CHO		$X = CH(OH)C_6H_{13}-n$ (84)	127
(CH ₃) ₂ NCH ₂	BuLi/ether/0°/ H ₅ 1 hr	D20	(CH ₃) ₂ NCH ₂ X	X = D (>90%) C_6H_5	23
n-CaH17CH=CHSCH3	s-BuLi/THF, HMPA/-78°/ 0.5 hr	(CH ₃ S) ₂ C ₆ H ₃ CHO (HgCl ₂)	n-C ₉ H ₁₉ COX	$X = SCH_3$ (>90%) $X = CH(OH)C_6H_5$ (51)	23 121
SC ₆ H ₅	" Buli/THF, TMEDA/-40°	n-C ₈ H ₁₇ Br (HgCl ₂) CH ₃ I	1-(Methylthio)-4-(phenyl butadiene (96)	$X = C_8 H_{17} \cdot n$ (82) thio)-1,3-	121 605
	BuLi/THF, TMEDA, HMPA/25° "	H ₂ O CH ₃ I	2-(Methylthio)thiophene 2-Methyl-5-(methylthio)t	(75–80) hiophene (75–80)	605 605
C ₆ H ₅ S C ₆ H ₅ S C ₆ H ₅	BuLi/ether/-10°	(CH ₃ O) ₂ SO ₂	C ₆ H ₅ C=CX	X = H (26), $X = CH_3$ (45)	129
SC.H.	BuLi/ether/-10°	(CH ₃ O) ₂ SO ₂	C ₆ H ₅ C=CX	X = H (17), $X = CH_3$ (53)	129
	Compound Lithiated C_2H_5O SC_6H_5 $(CH_3)_2NCH_2$ SC_6 $n-C_8H_{17}CH=CHSCH_5$ SC_6H_5 SC_6H_5 C_6H_5S SC_6H_5 SC_6H	Compound LithiatedConditions C_2H_5O " SC_6H_5 " $(CH_3)_2NCH_2$ BuLi/ether/0°/ SC_6H_5 $n-C_8H_{17}CH=CHSCH_3$ s-BuLi/THF, HMPA/-78°/ 0.5 hr $n-C_8H_{17}CH=CHSCH_3$ BuLi/THF, TMEDA/-78°/ 0.5 hr SC_6H_5 BuLi/THF, TMEDA, HMPA/25° " C_6H_5 SC_6H_5 SC_6H_5 BuLi/ether/-10° C_6H_5 SC_6H_5 SC_6H_5 BuLi/ether/-10°	Compound LithiatedConditionsSubstrate C_2H_5O " $n-C_6H_{13}CHO$ SC_6H_5 " $n-C_6H_{13}CHO$ $(CH_3)_2NCH_2$ $BuLi/ether/0^{\circ/}$ D_2O SC_6H_5 $1 hr$ D_2O $n-C_8H_{17}CH=CHSCH_5$ $s-BuLi/THF,$ $C_6H_5CH_5CH_5$ $n-C_8H_{17}CH=CHSCH_5$ $s-BuLi/THF,$ $C_6H_5CH_5CH_5$ SC_6H_5 $BuLi/THF,$ $n-C_8H_{17}Br(HgCl_2)$ $\sqrt{SC_6H_5}$ $BuLi/THF,$ CH_3I SC_6H_5 $BuLi/THF,$ CH_3I C_6H_5S SC_6H_5 $BuLi/ether/-10^{\circ}$ C_6H_5S SC_6H_5 $BuLi/ether/-10^{\circ}$ C_6H_5S SC_6H_5 $BuLi/ether/-10^{\circ}$ SC_6H_5 $BuLi/ether/-10^{\circ}$ $(CH_3O)_2SO_2$	Compound LithiatedConditionsSubstrateProduct and Yield (%) C_2H_5O " $n-C_9H_{13}CHO$ $(CH_3)_2NCH_2$ " $n-C_9H_{13}CHO$ $(CH_3)_2NCH_2$ C_{H_3} $(CH_3)_2NCH_2$ SC_6H_5 1 hr D_2O $(CH_3S)_2$ $n-C_9H_{17}CH=CHSCH_3$ $s-BuLi/THF,$ $HMPA/-78°/$ $C_9H_{17}Br$ (HgCl ₂) $n-C_9H_{17}CH=CHSCH_3$ $BuLi/THF,$ $m - C_9H_{17}Br$ (HgCl ₂) $n-C_9H_{19}COX$ $(GH_5S)_2$ $(CH_3S)_2$ $n-C_9H_{19}COX$ GC_9H_5S $BuLi/THF,$ $TMEDA/-40°$ CH_9I $BuLi/THF,$ $TMEDA, HMPA/25°n - C_9H_11-(Methylthio)-4-(phenylbutadiene (96))BuLi/THF,TMEDA, HMPA/25°n - CH_1I2-(Methylthio)thiophene2-Methyl-5-(methylthiophen$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE XIX. VINYL SULFIDES AND ALLENIC THIOETHERS (ALPHA) (Continued)

Note: References 360-607 are on pp. 355-360.

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
C ₈ H ₉ NOS	SCH=CHCH,	LDA/THF/-100°/ 5 min	CH3I	(E)-1-Methylpropenyl 2-pyridyl sulfoxide (96)	132
		(m)	C ₆ H ₅ CHO	(E)-1-Phenyl-2-(2-pyridylsulfinyl)-2- buten-1-ol (91)	132
C ₉ H ₁₀ OS	O ∫ C ₆ H ₅ SCH—CHCH₃	LDA/THF/-100°/ 10 min	CH₃I	$\begin{array}{c} O \\ \uparrow \\ C_6H_5S \\ X \\ CH_3 \end{array} \qquad X = CH_3 (80)$	132
		4	Propylene oxide	$X = CH_2CH(OH)CH_3$ (4	15) 132
		<u>.</u>	C ₆ H₅CHO	$X = CH(OH)C_6H_5 (93)$	132
	1.41	2	Styrene oxide	$X = CH(C_6H_5)CH_2OH$ (23)	132
C10H12O2S	O ↑ C ₆ H ₃ SCH—CHCH ₂ OCH ₃	LDA/THF/-100°/ 5 min	D ₂ O	C_6H_5S $X = D$ (71)	132

TABLE XX. VINYL SULFOXIDES (ALPHA)

TABLE XX. VINYL SULFOXIDES (ALPHA) (Continued)

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs
	C ₁₀ H ₁₂ O ₂ S (Contd.)	O ↑ C ₆ H₅SCH = CHCH₂OCH₃	y.	CH31	° C ₆ H ₅ S	X=CH ₃ (73)	132
164				С.Н.СНО	X CH ₂ OCH ₃	$X = CH(OH)C_2H_2$ (80)	132
				C ₆ H ₅ COCH ₃		$X = C(CH_3)C_6H_5$ (74)	132
	C ₁₅ H ₁₅ NOS	SCH-CH(CH ₂) ₂ C ₆ H ₅	LDA/THF/100°/ 5 min	CH₃I	(E)-1-Methyl-4-phenyl-1 pyridyl sulfoxide (99)	ÓH -butenyl 2-	132
	C ₁₆ H ₁₆ OS	O ↑ C ₆ H ₅ SCH=CH(CH ₂) ₂ C ₆ H ₅	LDA/THF/-100°/ 10 min	CH31	(E)-1-Methyl-4-phenyl-1 sulfoxide (89)	i-butenyl phenyl	132

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C ₄ H ₃ BrS	(S) Br	LDA/THF or ether/-70°	(CH ₃) ₃ SiCl	(5-Bromo-2-thienyl)trimethylsilane ()	246
	∠ _S J ^{Br}	C ₆ H ₅ Li/ether/ overnight	CO2	3-Bromo-2-thiophenecarboxylic acid (72)	48
C₄H₃FS	√√F	BuLi/ether/ reflux/15 min	CO2	3-Fluoro-2-thiophenecarboxylic acid (75)	385
C₄H₃IS	\sqrt{s}	C₀H₃Li/ether, TMEDA	CO2	5-Iodo-2-thiophenecarboxylic acid (30)	68
	NO2	CH ₃ TMEDA/ -10°/0.5 hr	, CO ₂	3-Iodo-2-thiophenecarboxylic acid (80), 4-iodo-2-thiophenecarboxylic acid (20)	68
C ₄ H ₃ NO ₂ S	\sqrt{s}	LDA/THF or ether/-70°	(CH ₃) ₃ SiCl	Trimethyl(3-nitro-2-thienyl)silane ()	246
C.H.ST	$\langle S_{T} \rangle$	BuLi/ether/ reflux/0.5 hr	CO2	5-t-2-Thiophenecarboxylic acid (I), 2-thiophenecarboxylic acid (II) (1+II, 87) (I:II, 89:11)	386, 3

TABLE XXI. THIOPHENES (ALPHA)

		TABLE AAL	morneres (nerna)	(Communa)		
Formula	Compound Lithiated	Conditions	Substrate	Product and Yie	eld (%)	Refs.
C4H4S	$\langle S \rangle$	BuLi/ether/0°/ 1 hr	FCIO ₃	\sqrt{s}_x	X=F (49)	149
		BuLi/THF/-30°	"S"		X=SH (65-70)	357
		BuLi/ether/ reflux/2 hr	"S"+CICH2CO2H		$\mathbf{X} = \mathbf{SCH}_2\mathbf{CO}_2\mathbf{H} (80)$	387
		BuLi/ether BuLi/ether/	"S" + CICH ₂ CO ₂ CH ₃ SO ₂		$X = SCH_2CO_2CH_3$ (85) $X = SO_2Li$ (57)	388 363
		BuLi/ether/-20° BuLi/ether/	$CF_2 = CCl_2$		$X = SeC_2H_5$ (73) $X = CF = CCl_2$ (81)	362 364
		reflux/0.5 hr BuLi/ether BuLi/ether/25°/	Ethyléne oxide C ₂ H ₅ Br		$X = (CH_2)_2 OH$ (78) $X = C_2 H_5$ (61)	389 20
		1 hr BuLi/ether/-35° BuLi/ether/	CICH2OCH3 (CH3)3SiCI		$X = CH_2OCH_3$ (76) $X = Si(CH_3)_3$ (75)	390 369
		reflux/3 hr BuLi/ether/25°/ 1 hr	(CH ₃ O) ₂ SO ₂		$X = CH_3$ (65)	20
					Ħ	
		BuLi/ether	N		$X = \bigcup_{N}^{N} \bigcup_{(64)}^{Br}$	391
			N ^M Br		H.	
			Br		YN	
			N		$ \begin{array}{c} \mathbf{X} = \\ \mathbf{Br} \\ \mathbf{N} $	391
		÷	(KMnO ₄)		$\mathbf{x} = \sum_{\mathbf{N}}^{\mathbf{N}} \mathbf{x}$ (-)	370
		BuLi/ether/ reflux/3 hr	CIE		X = B (35)	295
		BuLi/ether/25°/	n-C ₄ H ₉ Br		$X = C_4 H_9 - n$ (47)	20
		1 hr BuLi/ether/ reflux/3 hr	CIB[N(CH ₃) ₂] ₂		$X = B[N(CH_3)_2]_2$ (17)	295
			\frown		YN A	100
		BuLi/ether/0*	a d a		A= (1 (36)	137
		y .	€ _N ↓ _F		$\mathbf{X} = \bigcup_{n=1}^{N} (48)$	137
		BuLi/THF/-15%	C₅H₃Br		$X = C_6 H_5$ (31)	20
		BuLi/THF/25°/	BrCH ₂ CH(OC ₂ H ₅) ₂		$X = CH_2CH(OC_2H_3)_2$ (40)	392
		BuLi/ether	C ₆ H ₃ SCN		X = CN (19),	393
		BuLi/ether/0°/	ø-FC₀H₄CHO		$X = CH(OH)C_{6}H_{4}F_{-0}$	23
		BuLi/ether/25°/ 1 hr	C₅H₃CH₂Br		$X = CH_2C_6H_5$ (62)	20
		LDA/ether/0°/	n-C ₈ H ₁₇ Br (C ₆ H ₅) ₂ CO		$X = C_8 H_{17} - n$ (46) $X = C(C_6 H_5)_2 OH$	20 23

TABLE XXI.	THIOPHENES	(ALPHA)	(Continued))
------------	------------	---------	-------------	---

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield	(%)	Ref
C4H4S (Contd.)	$\overline{\langle \rangle}$	BuLi/hexane, TMEDA/ reflux/0.5 hr	CO ₂ (CH ₂ N ₂)	$x \sim x_s \sim x_s$	X = CO ₂ CH ₃ (III) (100)	40
		BuLi/ether/	CIB(CH ₃)N(CH ₃) ₂		$X = B(CH_3)N(CH_3)_2$ (22)	295
		BuLi/ether, TMEDA/ reflux/0.5 hr	$CO_2(CH_2N_2)$	III (46), methylthi	ophene-2-carboxylate (39)	40
			JCI2			
		BuLi/ether	a	(s x s	$X = I^{+}CI^{-}$ (69)	394
ŝ		BuLi/ether/ reflux/3 hr	Cl ₂ BN(CH ₃) ₂		$X = BN(CH_3)_2$ (17)	29
		BuLi/ether/0"			$X = \underbrace{(18)}_{N}$	13
		BuLi/reflux/ 20 min	(n-C4H9O)3B (H2O2)	(28) S (28)		289
		C ₆ H ₅ Li/ether/ reflux/2 hr	RCH ₂ CO ₂ C ₂ H ₅	$\left(\sum_{s} \right)_{co}$	HICH.R	
			$R = CH(CH_{2})NH_{2}$	12 000	$R = CH(CH_2)NH_2 (34)$	39
		24. 14	$R = CH_2N(CH_3)_2$ $R = CH(CH_3)N(CH_3)_2$		$R = CH_2N(CH_3)_2 (72)$ $R = CH(CH_3)N(CH_3)_2 (71)$	395 395
			R = CH(CH ₃)NHC ₂ H ₄		R=CH(CH_)NHC_H_	10
			$R = CH(C_2H_3)N(CH_3)_2$		(24) R = CH(C ₂ H ₄)N(CH ₂)	30
					(73)	
		9	$R = CH_2N$		$R = CH_2 N $ (73)	39
			$\mathbf{R} = \mathbf{CH}(\mathbf{CH}_3)\mathbf{N}(\mathbf{C}_2\mathbf{H}_5)_2$		$R = CH(CH_3)N(C_2H_5)_2$ (79)	39:
			$R = CH(CH_3)NHC_4H_{9}-n$		$R = CH(CH_3)NHC_4H_{o}-n$ (40)	395
		n -	$R = CH_2 N$		$R = CH_2 N$ (66)	395
		0-1	$R = CH(CH_3)N$		R = CH(CH ₃)N	395
ţ			$\mathbf{R} = CH(CH_3)N$		$R = CH(CH_3)N O$	395
			$R = CH(CH_3)N$		$\mathbf{R} = \mathbf{CH}(\mathbf{CH}_3)\mathbf{N}$	395
		i.	$\mathbf{R} = \mathbf{C}\mathbf{H}(\mathbf{C}\mathbf{H}_3)\mathbf{N}(\mathbf{C}_3\mathbf{H}_7\textbf{-}n)_2$		$R = CH(CH_3)N(C_3H_7-n)_2$	395
			$\mathbf{R} = \mathbf{C}\mathbf{H}(\mathbf{C}_{3}\mathbf{H}_{7}\textbf{-}\mathbf{n})\mathbf{N}(\mathbf{C}\mathbf{H}_{3})_{2}$		$R = CH(C_3H_7 - n)N(CH_3)_2$	395
			$\mathbf{R} = \mathbf{C}\mathbf{H}(\mathbf{C}_1\mathbf{H}_2\cdot\mathbf{i})\mathbf{N}(\mathbf{C}\mathbf{H}_3)_2$		(43) $\mathbf{R} = CH(C_3H_{7^-}i)N(CH_3)_2$ (71)	395

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
	CaHaS (Contd.)	$\langle s \rangle$		RCH ₂ CO ₂ H ₅	(C) 2 C(OH)CH ₂ R	
				$\mathbf{R} = \mathbf{CH}(\mathbf{CH}_3)\mathbf{N}(\mathbf{CH}_3)\mathbf{CH}_2\mathbf{C}_6\mathbf{H}_5$	$R = CH(CH_3)N(CH_3)-CH_2C_6H_3$ (56)	395
	C₃H₃NS	S	BuLi/ether/ -70°/1 hr	CO2	3-Cyano-2-thiophenecarboxylic acid (68)	217, 396
170	C₃H₄O₂S	CO₂H ⟨S	LDA/THF or ether, HMPA/-70°	(CH ₃) ₃ SiCl	2-(Trimethylsilyl)-3-thiophenecarboxylic acid ()	246
	C₃H₃BrS	Br S CH ₃	LDA/ether/25°	CO _z	3-Bromo-5-methyl-2-thiophenecarboxylic acid (56)	397
	C₅H₅OS	⟨s↓ _{och} ,	EtLi/ether/ reflux/0.5 hr	FCIO ₃	CH_3O S $X = F$ (34)	385
			CeHsLi/ether/	CO2	X = CO ₂ H (61)	231
			25°/1 hr	(CH ₃ O) ₂ SO ₂ CH ₂ =CHCH ₂ Cl DMF	$X = CH_3$ (40) $X = CH_2CH=CH_2$ (7) X = CHO (67)	231 7) 231 231
			C _s H₃Li/ether/ 25°/45 min	p-CH3OC6H4CH2 ⁻ COC2H3(H3O*)	$X = \underbrace{\begin{array}{c} C_2H_5\\ (46) \end{array}}_{(46)} C_6H_4OCH$	398 3 ⁻ P
			BuLi/ether/ reflux/0.5 hr	CH3OSO2C6H4CH3-p	X = CH ₃ (78)	399
			BuLi/reflux/ 20 min	r-C4H9OCO2C6H5	$\mathbf{X} = \mathbf{OC}_{4}\mathbf{H}_{9}\mathbf{\cdot}\mathbf{r} (72)$	289
			C ₆ H ₅ Li/ether/25° 45 min	/ C ₆ H ₃ CHO (H ₃ O*)	$O \left\{ \begin{array}{c} X \\ Y \\$	400
			**	C₅H₅COCH₃ (H₃O⁺)	$ \begin{array}{c} \mathbf{X} = \mathbf{C}\mathbf{H}_{s} \\ \mathbf{Y} = \mathbf{C}_{s}\mathbf{H}_{s} \end{array} $ (11)	400
11				010	X, Y=	400
			0 10	(C ₆ H ₅) ₂ CO p-CH ₃ OC ₆ H ₄ CH(C ₂ H ₃) [−] COC ₂ H ₅ (H ₃ O ⁺)	$ \begin{array}{l} X = Y = C_{6}H_{3} (72) \\ X = CH(C_{2}H_{3})C_{6}H_{4} \\ OCH_{3} \cdot p \\ Y = C_{2}H_{5} \end{array} \right\} (1) $	400 30)398
		OCH ₃			OCH3	
		L'S	BuLi/ether/ 25°reflux/ 2 hr	Ia.	x = 1 (42)	567, 401
			BuLi/ether/ reflux/0.5 hr	CO2	$\mathbf{X} = \mathbf{CO}_2 \mathbf{H} (86)$	402

Formula	Compound Lith:sted	Conditions	Substrate	Product and Yield ((%)	Refs.
	ОСН3					1
C ₅ H ₆ OS (Contd.)	L.S.	BuLi	DMF		X = CHO (83)	165
		33	DMA		X = COCH, (32)	165
		BuLi/ether/ reflux/15 min	(CH ₃ O) ₂ SO ₃	3-Methoxy-2-methy 4-methoxy-2-meth (IV + V, 75) (IV : 1 OCH ₃	lthiophene (IV), hylthiophene (V) V, 93:7)	145
		BuLi/reflux/ 20 min	(n-C ₄ H ₉ O) ₃ B (H ₂ O ₂)	(24)		289
C₅H₀S	⟨s↓ _{CH3}	EtLi/ether/ reflux/0.5 hr	FClO ₃	CH ₃ SX	X = F (53)	385, 14
		BuLi BuLi/ether/	"S" "S" + CH3I		X = SH (57) X = SCH ₃ (79)	290, 49 403
		BuLi/ether/	"S" + BrCH ₂ CO ₂ C ₂ H ₅		$X = SCH_2CO_2H$ ()	404
		BuLi BuLi/hexane, TMEDA/reflux	CO ₂ CO ₂ (CH ₂ N ₂)		$X = CO_2H$ (84) $X = CO_2CH_3$ (95)	405 40
		BuLi/ether/	(CH ₃ S) ₂		X=SCH ₃ (75)	399
		BuLi/ether/	Ac ₂ O		X = COCH ₃ (33)	371
		BuLi/ether/ reflux/3 hr	CIB(C ₂ H ₅) ₂		$X = B(C_2H_5)_2$ (28)	295
		BuLi/reflux/ 20 min	(n-C₄H₂O)₃B (H₂O₂)	CH ₃ S CO	47)	289
	CH ₃	C ₆ H₂Li/ether/ reflux/2 hr	CO2	CH ₃ S (VI) (19)	X S (VII) (68)	
		BuLi/ether, TMEDA/reflu: 15 min	(CH ₃ O) ₂ SO ₂ ×/	(VI+VII, 79) (VI:	X = CO ₂ H VII, 7:93) X = CH ₃	20, 48 145, 40
173		BuLi/ether/ reflux/0.5 hr	DMF	(VI + VII, 59) (VI : V	VII, 17:83) X = CHO	399, 40
		BuLi/hexane, TMEDA/reflu 0.5 hr	CO ₂ (CH ₂ N ₂) x/	Dimethyl 3-methylt dicarboxylate (1	hiophene-2,5- 00)	40
	SeCH.	BuLi/reflux/ 20 min	(n-C₄H₂O)₃B (H₂O₂)	(50)		289
C₃H₀SSe	⟨ 」	BuLi/2 hr	CO2	3-(Methylselenyl)-2- acid (VIII), 4-(methylselenyl)-3 acid (IX) (VIII+IX, 75) (VIII	thiophenecarboxylic 2-thiophenecarboxylic : IX, 56:44)	140

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C ₅ H ₆ S ₂	SSCH.	BuLi	"S"+CH ₃ I	2,5-Bis(methylthio)thiophene (57)	404
		BuLi/ether/0° 15 min	@O2	5-(Methylthio)-2-thiophenecarboxylic acid (87)	404
	CONHCH.	BuLi/ether/ reflux/0.5 hr	CO2	3-(Methylthio)-2-thiophenecarboxylic acid (70)	248
C6H7NOS	⟨Ţ s	BuLi/ether/25°- 35°/1 hr	D20	2-d-N-Methyl-3-thiophenecarboxamide (5	5) 134
	CH OCH	BuLi/ether/25°- 35°/3 hr	(C ₆ H ₅) ₂ CO	 2-(Hydroxymethyl)-N-methyl-α,α-diphenyl- 3-thiophenecarboxamide (23) 	134
C ₆ H ₈ OS	S CH2OCH3	BuLi/ether/25°/ 10 hr	CO ₂	$\int_{S} \int_{X} Ch_{2} OCH_{3} = CO_{2}H (89)$	142
		BuLi/ether/25"-	(CH ₃ S) ₂	X = SCH ₃ (61)	134, 43
		3571-1.5 m "	DMF (C ₆ H ₅) ₂ CO	X = CHO (72) $X = C(C_6H_5)_2OH$ (4	43, 134 6) 134
C.H.S	C ₂ H ₅	EtLi/ether/ reflux/0.5 hr	FCIO ₃	C_2H_5 X = F (55)	385
		BuLi/ether/	"S"+C2H3I	$\mathbf{X} = \mathbf{SC_2H_5} (78)$	408, 40
		-	"Se" + C2H3I "Se" + CICH2CO2CH3	$X = SeC_2H_5 (65)$ $X = SeCH_2CO_2CH_3$	362 46) 362
	C.H.	BuLi/ether/-35°	СІСН2ОСН3	$X = CH_2OCH_3 (65)$	390
	Cs I as	BuLi/ether, TMEDA reflux/15 min	(CH ₃ O) ₂ SO ₂	3-Ethyl-2-methylthiophene (X), 4-ethyl-2-methylthiophene (XI) (X+XI, 79) (X:XI, 3:97)	145
	CH3 CH3	BuLi/ether/ reflux/ 2 hr	CuCl ₂	$\begin{pmatrix} CH_3 \\ CH_3 \\ CH_3 \\ S \end{pmatrix}_2 (68)$	409
C ₆ H ₈ S ₂	S SC2H3	3	co,	5-(Ethylthio)-2-thiophenecarboxylic acid (77)	404
C ₆ H ₉ NO ₂ S ₂	S SO ₂ N(CH ₃) ₂	BuLi/THF/25°/ 20 min	(CH ₃) ₃ SiCl	N,N-Dimethyl-5-(trimethylsilyl)-2- thiophenesulfonamide (41)	135
C₂H₄S		BuLi/ether/ -10°-0°/ 0.5 hr	CO ₂ (CH ₂ N ₂)	$ \begin{array}{c} $	410
C7H6O3S	de la	BuLi/ether/ reflux/20 min	"S"+CICH₂CO₂CH₃ (NaOEt)	$\langle X = X \rangle$ $X = S (94)$	143
	3	BuLi/ether/ 25°-reflux/	"Se" + CICH ₂ CO ₂ CH ₃ (NaOEt)	X = Se (48)	411
		15 min BuLi/ether/	CO ₂ (H ₃ O ⁺)	3-Formyl-2-thiophenecarboxylic acid (78)	412
		reflux/15 min BuLi/ether/-70°	C ₆ H ₅ CN (H ₃ O ⁺)	2-Benzoyl-3-thiophenecarboxaldehyde (16)	413

TABLE XXI. THIOPHENES (ALPHA) (Continued)

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
	C7H₀NOS	CON(CH ₃) ₂	BuLi/ether/25°/ 20 min	Ę		134, 43
	C ₂ H ₁₀ LiNOS	CH(OLi)N(CH ₃) ₂	BuLi/reflux/ 135 min	CO2	3-Formyl-2-thiophenecarboxylic acid (44)	414
176	C7H10S	С ₃ H ₇ -п	EtLi/ether/ reflux/0.5 hr	FCIO ₃	2-Fluoro-5-propylthiophene (55)	385
		∑S ^{C3H2-i}	BuLi/ether, TMEDA/ reflux/15 min	(CH ₃ O) ₂ SO ₂	 3-Isopropyl-2-methylthiophene (XII), 4-isopropyl-2-methylthiophene (XIII) (XII + XIII, 66) (XII:XIII, 1:99) 	145
	C7H10S2	CH2SC2H5	Buli/ether	CO2	5-[(Ethylthio)methyl]-2-thiophene- carboxylic acid (53)	415
	C ₇ H ₁₁ NS	S CH ₂ N(CH ₃) ₂	BuLi/THF	D₂O	$(CH_3)_2NCH_2$ S X (88)	134
			97. 19 19	DMF (CH ₃) ₃ SiCl C ₆ H ₅ CHO (C ₆ H ₅) ₂ CO	X = CHO (40) $X = Si(CH_3)_3 (71)$ $X = CH(OH)C_6H_5 (5)$ $X = C(C_6H_5)_2OH (47)$	134 134 0) 416) 416
		_CH ₂ N(CH ₃) ₂			CH ₂ N(CH ₃) ₂	
			BuLi/ether/25°- 35°/4 hr	D ₂ O	$\begin{pmatrix} x \\ x \end{pmatrix} = D (80)$	43, 134
			BuLi/ether/25°- 35°/1 hr	DMF	X = CHO (75)	134, 43
			BuLi/ether/25°- 35°/1 hr	$C_6H_5CN(H_3O^+)$	$X_{s} = COC_{6}H_{5} (54)$	134, 43
			0 	(C ₆ H ₅) ₂ CO p-CH ₃ C ₆ H ₄ SO ₂ Br p-CH ₃ C ₆ H ₄ SO ₂ Cl	$X = C(C_6H_5)_2OH $ (67) X = Br (32) X = Cl (25)) 134, 43 134 134
	C7H12SSi	Si(CH ₃) ₃	BuLi/ether/ reflux/4 hr	CO2	5-(Trimethylsilyl)-2-thiophenecarboxylic acid (62)	369
177		Br Br				
	$C_8H_4Br_2S_2$	STLS	EtLi/THF/-70°/ 2 min	CO2	4,4'-Dibromo-[3,3'-bithiophene]-5- carboxylic acid (51)	417
	C ₈ H ₆ S ₂	00	C ₆ H ₅ Li/ether/ reflux/15 min	CO ₇	[2,2'-Bithiophene]-5-carboxylic acid (74)	418
			BuLi/reflux/ 45 min	.u.	[2,2'-Bithiophène]-5,5'-dicarboxylic acid (72)	419
	C ₈ H ₆ S ₂	C S S	C ₆ H₅Li/reflux/ 15 min	CO2	 [2,3'-Bithiophene]-2'-carboxylic acid (XIV), [2,3'-bithiophene]-5'-carboxylic acid (XV) (XIV+XV, 75) (XIV:XV, 38:52) 	418

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
	CeHeS3	⟨J ^S ⟨J	BuLi/ether/ reflux/1 hr	CuCl₂	(52) (52)	144
	CeHeS;	C2H5-S	-	"S"+C₂H₅I	5-Ethyl-2-(ethylthio)thieno[2,3-b]- thiophene (79)	420
		C ₂ H ₅ S	BuLi/ether	"S" + C₂H₅I	5-Ethyl-2-(ethylthio)thieno[3,2-b]- thiophene (69)	420
178	C ₈ H ₁₀ O ₂ S	S CH	BuLi/ether/25°/ 1 hr	(CH ₃) ₃ SiCl	$ \bigcup_{\substack{O\\CH_3}}^{O} X = Si(CH_3)_3 (96) $	421, 29
			BuLi/ether/25°/ 1.5 hr	(C2H3)3SiCl	$X = Si(C_2H_5)_3$ (74)	298
			BuLi/ether/25°/ 1 hr	CO ₂ (H ₃ O*)	$CH_3CO S X X = CO_2H$ (70)	421
			BuLi/ether/25°/	(CH3)3SiCI (H3O*)	X = Si(CH ₃) ₃ (93)	298
			1.5 hr " BuLi/ether/25°/	C2H5(CH3)2SiCI (H3O*) C6H3CN (H3O*)	$X = Si(CH_3)_2C_2H_5$ (2) $X = COC_6H_5$ (66)	35) 298 421
			I hr BuLi/ether/25°/	CH3(C6H3)2SiCl (H3O")	$X = Si(C_6H_5)_2CH_3 (0)$	57) 298
			1.5 hr "	$(C_8H_5)_3SiCl~(H_3O^*)$	$X = Si(C_6H_5)_3$ (73)	298
			BuLi/ether/25°/ 1 hr	С₄Н₅СНО	$\begin{bmatrix} 0 \\ S \\ CH_3 \end{bmatrix} X = CH(OH)C_8H_5 $ (6)	0) 421
			a.	C ₆ H₅NCO	X = CONHC ₆ H ₃ (65) 421
		CH ₃ CH ₃ CH ₃	BuLi/ether/25°/ 45 min, reflux/ 15 min	C ₆ H ₃ CN (H ₃ O*)	3-Acetyl-2-benzoylthiophene (27)	413
17	C ₈ H ₁₂ LiNOS		BuLi	"S"+BrCH2CO2CH1	Methyl [(3-acetyl-2-thienyl)thio]acetate () 422
	C ₄ H ₁₂ OS	S OCaHe-t	BuLi/ether/ reflux/2 hr	"S"	x = SH (73)	275
		a oranar		CO ₂ (CH ₃ S) ₂ (CH ₃ O) ₂ SO ₂ CICO ₂ C ₂ H ₅ CH ₂ =CHCH ₂ Br C ₆ H ₃ CH ₂ Cl r-C ₄ H ₉ OCO ₂ C ₆ H ₅ (MgBr ₂)	$X = CO_{2}H (75)$ $X = SCH_{3} (87)$ $X = CH_{3} (87)$ $X = CH_{2}C_{3}H_{3} (46)$ $X = CH_{2}CH_{3}CH_{2} (73)$ $X = OC_{4}H_{9} - t (78)$	275 275 275 275 275 86) 275 275 275 275
			· # ·	Cyclopentanone (H-O ⁺)	(80)	275

TABLE XXI. THIOPHENES (ALPHA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
	OC4H9-1			OC4H9-1	
C ₆ H ₁₂ OS	\sqrt{s}	BuLi/ether/ reflux/0.5 hr	CO2	$ x = CO_2 H $ (62)	423
		BuLi/ether/ reflux/2 hr	(CH ₃ O) ₂ SO ₂	X = CH ₃ (87)	141
		BuLi/ether/-30°-	CICO ₂ C ₂ H ₅ DMF	$X = CO_2C_2H_5 (7)$ $X = CH(OLi)N(CH)$	5) 141 I ₃) ₂ 148
		BuLi/ether/ reflux/2 hr	Ac ₂ O (MgBr ₂)	() X = COCH ₃ (75)	141
			t-C4H0OCO2C6H5 (MgBr2)	$\mathbf{X} = \mathbf{OC}_{\mathbf{t}}\mathbf{H}_{\mathbf{p}} \cdot \mathbf{t} (70)$) 141
C ₈ H ₁₂ O ₂ S ₂	SO ₂ C ₄ H _a -t	BuLi/THF/-20°/ 9.5 hr	CO2	5-(1-Butylsulfonyl)-2,4-thiophene- dicarboxylic acid (68)	136
		æ	DMF	5-(t-Butylsulfonyl)-2,4-thiophene- dicarboxaldehyde (59)	136
	SO2C4H9-1	BuLi	CO2	3-(1-Butylsulfonyl)-2,4-thiophenedicarbox	tylic 565
	3			acid (42), 3-(r-butylsulfonyl)-2- thiophenecarboxylic acid (4), 3-(r-but 2,5-thiophenedicarboxylic acid (8)	ylsulfonyl)-
CaH12S	S C4H9-n	EtLi/ether/ reflux/0.5 hr	FCIO ₃	2-Butyl-5-fluorothiophene (55)	385
	S C.HI	EtLi/ether/ reflux/0.5 hr	FCIO ₃	2-1-Butyl-5-fluorothiophene (49)	385
		BuLi/ether/ reflux/45 min	CO ₂	5-t-Butyl-2-thiophenecarboxylic acid (5	5) 399
	$\sqrt{s}^{C_{a}H_{9}-t}$	BuLi/ether, TMEDA/ reflux/15 min	(CH ₃ O) ₂ SO ₂	3-t-Butyl-5-methylthiophene (72)	145
C ₈ H ₁₂ SSe	SeC ₄ H ₉ -n	BuLi/ether/-30°	"S"+CH₃I	SeC4Ho-n Set	C4H9-71
	5			(XVI) (XVII)	
		BuLi/2 hr	"Se" + CH ₃ 1 CO ₂	$(XVI: XVII, 70: 30) X = SCH_3$ $(XVI + XVII, 67) X = SeCH_3$ (XVI + XVII, 79) (XVI: XVII, 60: 40)	140 140 140
C ₄ H ₁₂ S ₂	SS SC4H9-1	BuLi	CO2	X = CO ₂ H 3-(<i>t</i> -Butylthio)-2-thiophenecarboxylic acid (), 4-(<i>t</i> -butylthio)-2-thiophene carboxylic acid (), 3-(<i>t</i> -butylthio)-2 thiophenecarboxylic acid ()	424 .5-
			=	Li SC4H9-1 ()	565
C ₈ H ₁₃ NO ₂ S ₂	S SO-N(C-H-)	BuLi/ether/25°/ 1 hr	CO2	5-(Diethylsulfamoyl)-2- thiophenecarboxylic acid (82)	135
	2	BuLi/ether/25°/	(CH ₃) ₃ SiCl	N,N-Diethyl-5-(trimethylsilyl)-2- thiophenesulfonamide (79)	135

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C,H₄CINS	C N S	BuLi/THF/0°/ 0.5 hr	(CH ₃) ₃ SiCl	and and and	⟨ ∫ _x
		BuLi/ether/0°/ 0.5 hr	(CH ₃) ₃ SiCl	(0.4) (91) $X = Si(CH_3)_3$ (36) (43) $X = Si(CH_3)_3$	138 138
		t-BuLi/THF/-60	* (C ₆ H ₅) ₂ CO	$(\longrightarrow) \qquad (83) \qquad X = C(C_6H_5)_2OH$	137
C₅H ₇ NS		r-BuLi/THF/-60°	CuCl ₂ (O ₂)	NS NS	`x
				(-) (63) X =	137
		BuLi/ether/0°/	(CH ₃) ₃ SiCl	(62) (13) $X = Si(CH_3)_3$	138
		0.5 hr BuLi/THF/0°/	246	(4) (93) $X = Si(CH_3)_3$	138
		t-BuLi/THF/-60*	(C₅H₃)₂CO	() (87) $X = C(C_6H_3)_2OH$	137
		BuLi/ether/0°/ 15 min	CuClz	$ \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	280 (45)
		4		$\mathbf{X} = \bigcup_{n=1}^{N} \mathbf{N} (55)$	280
C₀H₀OS	CH2 S	BuLi/ether/0°/ 2 hr	Ac ₂ O	5-Furfuryl-2-thienyl methyl ketone (16)	371
C ₀ H _a S ₂	SL CH ₂ S	3	CO1	5-(2-Thienyl)-2-thiophenecarboxylic acid ()	389
		BuLi/ether/ 10 min	Ethylene oxide	$\left(HO(CH_2)_2 \xrightarrow{s}_2 CH_2\right)$	
		2 BuLi		S CH ₂ S (CH ₂) ₂ OH (13) (74) (77) (13)	389 389
C ₈ H ₉ OPS ₂	P CH ₃	BuLi	CO ₂	$(\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	270

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
a 11 086	O CH ₃		CH COCH	(PCH	X-C(CH) OH (40)	270
CoH4OPS2 (Conid.)	S S		CH3COCH3	$\left(\left\langle s \right\rangle_{x}\right)_{z}$	$X = C(CH_3)_2 OH (40)$	270
C ₉ H ₁₁ NOS	S (CH ₃) ₂	BuLi/THF/-70°/ 1 hr	C₅H₅CHO	S CH	3)2, X S N	CH ₃) ₂
		BuLi/ether/-70°- 25°		(36) (91)	(55) $X = CH(OH)C_6H_5$ (4) $X = CH(OH)C_6H_5$	139 139
C ₉ H ₁₄ OS	S CH3	BuLi/ether/ reflux/2 hr	ClCO ₂ C ₂ H ₅	Ethyl 4-t-butoxy-5- thiophenecarboxy	methyl-2- late (66)	141
	CH ₃ S OC ₄ H ₉ -t	BuLi/ether/ reflux/0.5 hr	₽-C₄H₀OCO₂C₅H₅	2,3-Di-t-butoxy-4-n	nethylthiophene (79)	147
C ₉ H ₁₄ O ₂ S	$\int_{S} L_{CH(OC_2H_5)_2}$	BuLi/2.5 hr	CICH2OCH3	(C ₂ H ₅ O) ₂ HC	x raise	200
		BuLi/ether/ - 30°-25°/ 2.5 hr	DMF		X=CH ₂ OCH ₃ (56) X=CHO ()	425
		BuLi/ether/25°/	(CH₃)₃SiCl (H₃O*)		X = Si(CH ₃) ₃ (94)	298
		, m.,	$(C_2H_5)_3$ SiCl (H_3O^*)		$X = Si(C_2H_5)_3$ (87)	298
		BuLi/ether/ -10°-25°/ 2.5 hr	CO ₂ (H ₃ O*)	OHC SX	$X = CO_2 H$ (60)	426
		BuLi/ether/25%	C ₂ H ₅ (CH ₃) ₂ SiCl (H ₃ O ⁺)		$X = Si(CH_3)_2C_2H_5$ (83)	298
	CH(OC H)	1 m 	$CH_3(C_6H_5)_2SiCI (H_3O^*)$ $(C_6H_5)_5SiCI (H_3O^*)$		$X = Si(C_6H_5)_2CH_3$ (49) $X = Si(C_6H_5)_3$ (72)	298 298
	S CHIOC2N5/2	BuLi/ether/-30°- reflux/20 min	"S" + CICH ₂ CO ₂ CH ₃ (H ₃ O ⁺)	Methyl [3-formyl-2-1	thienyl)thio]acetate (77)	327
		BuLi	$DMF\left(H_{3}O^{*}\right)$	2,3-Thiophenedicarb	xxaldehyde (85)	428
	C6H4Br-0			CO2CH3	CH403C	
C10H7BrS	\sqrt{s}	BuLi/-35°- 25°	CO ₂ (CH ₂ N ₂)			(XI

(XVIII+XIX+XX, 44) (XVIII:XIX:XX, 1:2:3)

CO2CH3

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
C10H14S	S-C	BuLi	CICH2OCH3	2-Cyclohexyl-5-(methoxymethyl)thiophene (78)	390
C10H15NS	SL CH2N	BuLi	CICH2OCH3	1-[5-(Methoxymethyl)-2-thienyl]piperidine (50)	390
C10H16O2S	SCH ₂ CH(OC ₂ H ₅) ₂	BuLi/ether/25°/ 5 min	(CH ₃) ₃ SiCI	C2H50 X-SIGN (87)	392
		BuLi/ether/25°/ 10 min	С₅Н₅СНО	$X = SI(CH_{3})_3$ (87) $X = CH(OH)C_6H_3$ (66)	392
	SC(OC ₂ H ₅) ₂ CH ₃	BuLi/2.5 hr	CICH₂OCH₃	5-(Methoxymethyl)-2-thienyl methyl ketone, diethyl acetal (50)	390
		BuLi	DMF	5-(1,1-Diethoxyethyl)thiophene-2- carboxaldehyde (48)	434
	NLi	BuLi/-10°/ 0.5 hr	CH ₂ CI	5-Furfuryl-2-thienyl methyl ketone, diethyl acetal (22)	371
C ₁₁ H ₈ LINS	C.H.	BuLi/ether/ reflux/2 hr	CO ₂ (H ₃ O*)	3-Benzoylthlophene-2-carboxylic acid (70)	570
	3	0	C, H, CN (H, O*)	2,3-Dibenzoylthiophene (47)	570
C ₁₁ H ₈ S		BuLi/ether/ reflux	CO2	CO ₂ H (XXX),	43
				(XXX + XXXI + XXXII, 45)	
C11H10O2S2		BuLi/ether/-35° to -20°/20 min	"S" (H ₃ O*) 1	$\langle \downarrow \downarrow \rangle$ (35), $\langle \downarrow \downarrow \rangle$	S
				$\langle \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \rangle$ (6)	436
		BuLi/ether/-35°	l ₂	(((S))) (56)	294
		BuLi/ether/	CO. (H.O.)	3 3' Cathonyldi 2 thionhananathouslin	427

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
C ₁₁ H ₁₀ S	CH-Cc.H.	BuLi/ether/ reflux/0.5 hr	CO2	5-Benzyl-2-thiophenecarboxylic acid (77)	438
	QC H-r	BuLi/ether/ reflux	CO2	3-Benzyl-2-thiophenecarboxylic acid (XXXII). 4-benzyl-2-thiophenecarboxylic acid (XXXII) (XXXIII+XXXIV, 80) (XXXIII:XXXIV,	439 /) 3:22)
C11H18LiNO2S	S CH(OLi)N(CH ₃);	BuLi/ether/-30°- reflux	DMF	3-1-Butoxy-2,5-thiophenedicarboxaldehyde (60)	148
	(CH ₃) ₂ N(LiO)HC	C4H9-1			
	$\langle \rangle$	BuLi/ether/25°/ 3 hr	DMF	4-1-Butoxy-2,3-thiophenedicarboxaldehyde (60)	148
C12H6N2S	() ()	LDA/ether	Culz	N N N ())	440
C12H14S2	CH ₃ -CH ₃ CH ₃ CH ₃ -CH ₃ -	H ₃ BuLi/ether/ reflux/2 hr	CO	4,4',5,5'-Tetramethyl-[3,3'-bithiophene]- 2,2'-dicarboxylic acid (84)	409
	$ \begin{array}{c} CH_3 & CH_3 \\ \downarrow & \downarrow \\ S & \downarrow \\ $	EtLi/ether/ refluz/3 hr	CO ₂	2,2',4,4'-Tetramethyl-[3,3'-bithiophene]- 5,5'-dicarboxylic acid (77)	406
	CH ₃ CH ₃	EtLi/ether/ reflux/2 hr	(CH ₃ O) ₂ SO ₂	2,2',4,4',5,5'-Hexamethyl-3,3'- bithiophene (84)	406
C13H20O2S	OC4H9-t	BuLi/ether/20°/	(CH ₃ O) ₂ SO ₂	2,3-Di-1-butoxy-5-methylthiophene (69)	147
	3	BuLi/ether/ reflux/1.5 hr	CICO ₂ C ₂ H ₅	Ethyl 4,5-di- <i>i</i> -butoxy-2- thiophenecarboxylate (51)	141
	1-C4H9O OC4H9-1	BuLi/ether/20°/	(CH ₃ O) ₂ SO ₂	3,4-Di-t-butoxy-2-methylthiophene (91)	147
	3	0.5 hr BuLi/ether/ - 20°- reflux/1 hr	DMF	3,4-Di-t-butoxy-2-thiophenecarboxaldehyde (50)	148
C13H9NS	(S) N)	BuLi/ether/0°/ 0.5 hr	(CH ₃) ₃ SiCl	S ^N S ^{Si(CH₃)₃,}	138
				(CH ₃) ₃ Si	
				(8) (45)	

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C13H11FO2S	o-FC ₆ H ₄ S	BuLi/ether/0°/ 2 ht	сн₅сно	$ \begin{array}{c} S & -CH(OH)CH_3 \\ S & -O \\ C_6H_4F-0 \end{array} $ (60)	23
C13H12O2S	C ₆ H ₅ S	BuLi/ether/ reflux/2 hr	CO ₂ (H ₃ O ⁺)	3-Benzoyl-2-thiophenecarboxylic acid (4	3) 413
C13H22O2S	r-C4H9O CH3 S	BuLi/ether/20°/ 0.5 hr	(CH3O)2SO2	3,4-Di-t-butoxy-2,5-dimethylthiophene (81) 147
C14H11OPS2	P CoH,	BuLi/THF/25°/ 1 hr	Br ₂	(x = Br (65)	270
	5 3	81	CO3	$(-5^{\circ} - X)_2$ X = CO ₂ H (75)	270
		BuLi/THF/25°/ 1 hr	СН3СОСН3	$\mathbf{X} = \mathbf{C}(\mathbf{CH}_3)_2\mathbf{OH} (\mathbf{A}_3)_2\mathbf{OH}$	45) 270
		17 40 10	(CH ₃) ₃ SiCl C ₈ H ₃ CHO C ₆ H ₃ COCH ₃	$X = Si(CH_3)_3 (30)$ $X = CH(OH)C_6H_3$ $X = C(CH_3)C_6H_3 (30)$ $X = C(CH_3)C_6H_3 (30)$	270 (70) 270 50) 270
			(C ₆ H ₅) ₂ CO	$X = C(C_6H_5)_2OH $	80) 270
		BuLi.	CH ₃ CO ₂ C ₂ H ₅	$ \begin{array}{c} & & \\ & & $	270
		<u>.</u>	CO ₂ C ₂ H ₅	$\mathbf{X} = \bigcup_{\mathbf{N}} (35)$	270
		т. н.	C6H5CO2C2H5 HCO2C2H5	$X = C_6H_5$ (68) 3-(Phenyl-3-thienylphosphinyl)-2- thiomhenecarboxaldehyde (48)	270 270
C14H11PS2	$\sqrt{s}_p \sqrt{s}$	BuLi	co ₂ x	$S \downarrow (Y) \\ S \downarrow Z \\ C H $ $X = Z = CO_2 H $ (4)	0) 270
	Ċ ₆ H ₅		(C ₆ H ₅) ₂ CO (H ₂ O ₂)	$ \begin{array}{c} X = C(C_6H_5)_2OH \\ Y = O \\ Z = H \end{array} \right\} $	(35) 270
			CH3CO2C2H5 (H2O2)	$\left(\left\langle \left\langle S \right\rangle \right\rangle_{P}^{O} \left\langle S \right\rangle_{2C(CH_{3})OH}^{O} \left(30 \right) \right\rangle$	270
5.26.24	CH ₃ N-N	Del Materi	A FC H CHO	S CH(OH)CeH4F-0	23

TABLE XXI.	THIOPHENES (ALPHA) (Continued)

Note: References 360-607 are on pp. 355-360.

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C7H5NS	(N) S	CH ₃ Li/ether/ -25°/4 hr	D ₂ O	$X = CH_{s} $ (11), $Y = H$	443
				$\left. \begin{array}{c} \mathbf{X} = \mathbf{H} \\ \mathbf{Y} = \mathbf{D} \end{array} \right\} $ (40)	443
		BuLi/hexane, TMEDA/-70°	DMF	$ \begin{array}{c} X = H \\ Y = CHO \end{array} $ (66)	444
C₄H₅CIS	CI CI S	BuLi/ether/0°/* 1 hr	CO₂	$CI = CO_2H (83)$	445
		17- 14	(CH ₃ S) ₂ (CH ₃ O) ₂ SO ₂	$X = SCH_3$ (82) $X = CH_3$ (96)	445 445
CsH ₆ S	$\langle \rangle$	BuLi	Br ₂	$ \begin{array}{c} & & \\ & & $	279
		BuLi/ether/0°	FCIO ₃	X = F (70)	149
		BuLi/ether/25°/ "overnight"	CO ₂	$X = SC_2H_5$ (69) $X = CO_2H$ (82)	420 48, 279, 446, 281
		BuLi/hexane, TMEDA/reflux/ 0.5 hr	CO ₂ (CH ₂ N ₂)	$X = CO_2CH_3$ (55). Dimethyl benzo[b]thioph 2.7-dicarboxylate (12)	40 ene-
		BuLi	C2H4I	$X = C_2 H_4$ (30)	446
		BuLi	CH,CHO	$X = CH(OH)CH_3$ (72)	279
		EtLi/ether/ reflux/45 min	CCI3CHO	$X = CH(OH)CCI_3 (86)$	447
		BuLi/ether/0°/*	(CH ₃ S) ₂	X = SCH ₃ (87)	445

TABLE XXII. CONDENSED THIOPHENES (ALPHA)

Fo	ormula	Compound Lithiated	Conditions	Substrate	Product and Yield	(%)	Refs.
C.	HeS	$\langle \rangle$	BuLi	(CH ₃ O) ₂ SO ₂	∭-x	X = CH ₃ (91)	274, 448
			BuLi/THF/-10°-	(CH ₃) ₃ SiCl	~ 3	$X = Si(CH_3)_3 (25)$	251
			BuLi	DMA		$X = COCH_3$ (79)	446
			=	(CH ₃) ₂ N	0.	$X = CH = CH NO_2$ (26)	285
			BuLi	(C2H5O)2SO2	-1	X=C ₂ H ₅ (81)	274, 448
196				S NCO		$X = CONH - S^{N}$ (71)	279
				NCO		X = CONH (54)	279
						N (74)	279
			BuLi/ether/25°/	C ₆ H ₅ F		X = CONH $X = C_{a}H_{a}$ (55)	449
			24 hr BuLi	o-BrCsH4Cl		$X = C_6 H_5 (7)$	450
				CH ₃		CH,	
			19 <u>9</u> -	U		X = HO (41)	450
			See.	С₄Н₃СНО		$X = CH(OH)C_6H_5$ (70)	279
			ŧ	₽-СІС ₆ Н₄СНО ₽-СН₃С ₆ Н₄СНО ₽-(СН₃)₂NС ₆ Н₄СН	ю	$X = CH(OH)C_{6}H_{4}Cl-p$ (68) $X = CH(OH)C_{6}H_{4}CH_{3}-p$ () $X = CH(OH)C_{6}H_{4}N(CH_{3})_{2}-p$ (47)	279 279 279
			ан. Эм.	C6H3NCO o-CH3C6H4NCO		$X = CONHC_6H_3 (81)$ $X = CONHC_6H_4CH_{3}-\sigma (41)$	279 279
			BuLi/ether/-10°	C ₆ H₃COCH₃		$X = C(CH_3)C_3H_3 (77)$	451
			BuLi/ether/-20°/ 1.5 hr	(C ₆ H ₅) ₃ SiCl		$\mathbf{X} = \mathrm{Si}(\mathbf{C_6H_5})_3 (71)$	452
			BuLi	HO ₂ C	NCO	X = CONH (23) CO ₂ H	279
				C6H3N(CH3)CHO		X = CHO (42) $X = CH_{2}$ (43)	278
197			-		5H5NO2)	$\mathbf{X} = \underbrace{\mathbf{N}}_{(49)}$	281
			BuLi/ether/ 25°/1 hr	(n-C ₄ H ₉ O) ₃ B (H ₃ O ⁺ , H ₂ O ₂)		(76)	151, 150
			BuLi		$\int_{2}^{SO_2} \left(\Box_{S} \Box_{C} \right)$	$\operatorname{conh} - \operatorname{SO}_2 (17)$	279
C,	,H _s S	CH3 CH3	BuLi/ether/	CO2	3-Methylbenzo[b]th	hiophene-2-	10

TABLE XXII. CONDENSED THIOPHENES (ALPHA) (Continued)

-	Compound Enmated	Conditions	Substrate	Froduct and Field (%)	Keis
CoHeS (Contd.)	CH ₃	BuLi/ether/* 0°/1 hr	(CH ₃ S) ₂	5-Methyl-2-(methylthio)benzo[b]thiophene (91)	445
(-8-		(CH ₃ O) ₂ SO ₂	2,5-Dimethylbenzo[b]thiophene (85)	445
$C_{10}H_6S_2$	CT222	BuLi/ether/-40°- 25°/2 hr	DMF	CHO S (70)	453
	CIS ^S	BuLi/ether/-40°- 25°/2 hr	CO2	(63)	453
	ST)S	BuLi/ether/25°/ 15 min	C ₆ H₄N(CH₃)CHO	OHC-S (54) CHO	278
	CH 000H	4 BuLi/ether/ reflux/0.5 hr		OHC-ST (99)	278
C10H4O2S	C S S	BuLi/THF/-78°/ 0,5 hr	D ₂ O	2-d-Benzo[b]thiophene-3-acetic acid (81)"	153
C10H11NS	(CH ₂) ₂ NH ₂ (CH ₂) ₂ NH ₂ (CH(OLi)N(CH ₃)	BuLi/THF/78°/ 0.5 hr	D₂O	2-d-Benzo[b]thiophene-3-ethylamine (83) ⁶	153
C ₁₁ H ₁₂ LiNOS	\sim	BuLi/-70° to -30°	"S"	2-Mercaptobenzo[b]thiophene-3- carboxaldehyde ()	454
C ₁₂ H ₈ S	Q.	BuLi/ether/25°/ 2 hr, reflux/ 2 hr	CO2	$x = CO_2 H (75)$	455
	(CH.) N(CH.)		C ₆ H ₅ N(CH ₃)CHO	X = CHO (68)	455,
C12H15NS	US (Chapper) Chapper)	2 BuLi/THF/-78°/ 0.5 hr	D ₂ O	N,N-Dimethyl-2-d-benzo[b]thiophene-3- ethylamine (83)	153
C14H10S	CosH _s	BuLi/ether/0°- 25°/1 hr	CO2	3-Phenylbenzo[b]thiophene-2-carboxylic acid (53)	456
C15H10N2S	(N)	LDA/ether	Culz	S (61)	440

TABLE XXII. CONDENSED THIOPHENES (ALPHA) (Continued)

^a The isolated yield was 81%; the deuterium incorporation was 70%.
^b The isolated yield was 83%; the deuterium incorporation was 80%.

- Note: References 360-607 are on pp. 355-360.

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
C3H2BrNS	N S Br	BuLi/THF/ -65°/15 min*	CO2	4-Bromo-5-isothiazolecarboxylic acid (70)	154
	a	"	DMF	4-Bromo-5-isothiazolecarboxaldehyde (73)	154
C3H2CINS	NS	BuLi/THF/ -65°/15 min*	CO2	4-Chloro-5-isothiazolecarboxylic acid (68)	154
	1.1		DMF	4-Chloro-5-isothiazolecarboxaldehyde (65)	154
C ₃ H ₂ INS	NS	BuLi/THF/ -65°/15 min*	DMF	4-Iodo-5-isothiazolecarboxaldehyde (33)	154
C ₃ H ₃ NS	NS	BuLi/THF/ -65°/15 min	Br ₂	N_{S} X = Br (34)	154
			CO2	$\mathbf{X} = \mathbf{CO}_{2}\mathbf{H} (48)$	154
			CH ₃ I	$\mathbf{X} = \mathbf{CH}_3 (40)$	154
	_CO₂H		DMF	X = CHO (75)	154
C4H3NO2S	N _S J	BuLi/THF/ -65°/15 min*	CO2	4,5-Isothiazoledicarboxylic acid (15)	154
C ₄ H ₄ BrNS	CH ₃ Br	BuLi/THF/ -65°/15 min*	CO2	$\begin{array}{c} CH_3 \\ N \\ S \\ X \end{array} = CO_2 H (56)$	154

TABLE XXIII. ISOTHIAZOLES (ALPHA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield	1 (%)	Refs
	CH ₃ Br		A - 4	CH ₃ Br		
C4H4BrNS (Contd.)	NS		CH ₃ 1	NSX	$\mathbf{X} = \mathbf{CH}_3 (40)$	154
		Ĥ.	DMF		X = CHO (51)	154
			C2H3I*		$X = C_2 H_5$ (34)	154
			n-C3H71*		$X = C_3 H_7 - n$ (28)	154
		.0	C ₆ H ₅ CH ₂ Br		$X = CH_2C_6H_5 (13)$	154
	CH ₃ CI					
C₄H₄CINS	N _s	BuLi/THF/ -65°/15 min*	CO2	4-Chloro-3-methyl carboxylic acid	l-5-isothiazole- (75)	154
		.a	DMF	4-Chloro-3-methyl carboxaldehyde	l-5-isothiazole- (47)	154
	CH ₃	a contraction	11	Not a long		
C ₄ H ₄ INS	NS	BuLi/THF/ -65°/15 min*	CO2	4-Iodo-3-methyl-5 (58)	-isothiazolecarboxylic acid	154
			DMF	4-Iodo-3-methyl-5 (68)	-isothiazolecarboxaldehyde	154
	CH3			CH3		
C.H.SNS	NS	BuLi/THF/-70°	"S" + BrCH ₂ CO ₂ C ₂ H ₅ (OH ⁻)	NSX	$X = SCH_2CO_2H (36)$	457
		BuLi/THF/ -65°/15 min	CO2		$\mathbf{X} = \mathbf{CO}_{2}\mathbf{H} (50)$	154
		39	DMF		X = CHO (50)	154
	Сн₃			СН3		
	NS	BuLi/THF/-70°	"S" + BrCH ₂ CO ₂ C ₂ H ₅ (OH ⁻)	NS	$X = SCH_2CO_2H (51)$	45
		BuLi/THF/ -65°/15 min	CO2	- A	$\mathbf{X} = \mathbf{CO}_{2}\mathbf{H} (40)$	15
			DMF		X = CHO (55)	15
	CH ₃ CO ₂ H			CH3 CO2	H	
C ₅ H ₅ NO ₂ S	NS	BuLi/THF/ -70°/15 min	Br ₂	NSX	X = Br (52)	15
		BuLi/THF/	CO2		$\mathbf{X} = \mathbf{CO}_2 \mathbf{H} (29)$	15
		-05/15 min*	DIE		Y-CHO (25)	15

TABLE XXIII. ISOTHIAZOLES (ALPHA) (Continued)

Note: References 360-607 are on pp. 355-360.

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
	C ₃ H₂CINS	(S)	BuLi/ether/-80°	СН3СНО	2-Chloro- α -methyl-5-thiazolemethanol (88)	157
	C ₃ H ₃ NS	()	C ₆ H ₅ Li/-60°	CO ₂	$\int_{S}^{N} X = CO_2 H (40)$	156
			BuLi/ether/	Ethylene oxide	$X = (CH_2)_2 OH$ (30)	564
204			-60 /0.5 hr	CH ₃ CHO C ₂ H ₅ CHO <i>n</i> -C ₃ H ₇ CHO (CH ₃) ₂ CHCHO <i>n</i> -C ₆ H ₁₃ CHO (C ₆ H ₅) ₂ CO	$X = CH(OH)CH_3 (30)$ $X = CH(OH)C_2H_5 (50)$ $X = CH(OH)C_3H_7 - n (90)$ $X = CH(OH)CH(CH_3)_2 (85)$ $X = CH(OH)C_6H_{13} - n (90)$ $X = C(C_6H_5)_2OH (22)$	564 564 564 564 564 564
	C₄H₅NS	CH ₃	BuLi/ether/ -60°/0.5 hr	CH ₃ I	$\begin{array}{c} CH_{3} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	564
			" BuLi/ether/	Ethylene oxide CH ₃ CHO	$X = (CH_2)_2OH$ (42) $X = CH(OH)CH_3$ (48)	564 564
			BuLi/ether/	Propylene oxide	$X = CH_2CH(OH)CH_3 (51)$	564
			-0070.3 hr	n-C ₃ H ₇ CHO	$\mathbf{X} = \mathbf{CH}(\mathbf{OH})\mathbf{C}_{3}\mathbf{H}_{7} \cdot \mathbf{n} (93)$	564
		CH ₃	BuLi/ether/-70°	CO2	$CH_3 = CO_2H$ (42)	158
			BuLi/ether/-25° BuLi/ether/-70°	CH ₃ I C ₆ H ₅ CN (H ₃ O ⁺) n-C ₃ H ₇ CHO	$X = CH_3 (70)$ $X = COC_6H_5 (50)$ $X = CH(OH)C_3H_7 - n (74),$ 2-Methyl- α -propyl-5-thiazolemethanol (26)	158 158 158
	C₅H ₇ NS	CH ₃ S CH ₃	BuLi/THF/ -78°/0.5-1 hr	CH₃I	$ \begin{array}{c} CH_3 \\ X \\ X \\ X \\ CH_3 \end{array}, \begin{array}{c} CH_3 \\ CH_3 \\ CH_2 \\ CH_2 X \end{array} $	
			BuLi/ether/ -60°/0.5 hr	Сн₃сно	(12) $X = CH_3$ (88) () $X = CH(OH)CH_3$ (57)	159, 460 564
			BuLi/THF/ -78°/0.5-1 hr	n-C ₃ H ₇ CHO C ₆ H ₅ CH ₂ Cl	() $X = CH(OH)C_3H_7 - n$ (72) (10) $X = CH_2C_6H_5$ (90)	564 159
205		CH ₃ CH ₃ S	C ₆ H ₅ Li/ether/ 25°/1 hr	CH2O	$\begin{array}{c} CH_3 \\ \hline \\ CH_2 \\ S \\ X \end{array} X = CH_2OH (58)$	459
		CH.	97 91	CICH₂OCH₃ C ₆ H₅CHO	$X = CH_2OCH_3$ (42) $X = CH(OH)C_6H_5$ (55)	459 459
	C ₆ H ₉ NS	C2H5 S	BuLi/ether/ -60°/0.5 hr	Propylene oxide	5-Ethyl-α,4-dimethylthiazole-2- ethanol (76)	564
		p-CIC ₆ H				
	C10H8CINS	L'S CH,	BuLi/THF/-78°/ 0.5-1 hr	CH3I	4-(p-Chlorophenyl)-2,5-dimethylthiazole (93), 4-(p-chlorophenyl)-2-ethylthiazole(3)	159

TABLE XXIV. THIAZOLES (ALPHA)

	Formula	Compounded Lithiated	Conditions	Substrate	Product an	d Yield (%)		Refs.
22	C10H9NS	C6H3 S CH3	BuLi/THF/-78°/ 0.5-1 hr	CH₃I	C6H5	CH ₂ X X	CH ₃	
8				22.2	(5)	$X = CH_3$	(95)	460, 15
			17	C ₂ H ₅ I	(7)	$X = C_2 H_5$	(86)	159
				(CH ₃) ₃ SiCl	(4)	$X = Si(CH_3)_3$	(96)	159
			- in the second s	C6H5CHO	()	$X = CH(OH)C_6H_5$	(97)	159
		p-CH ₃ OC ₆ H ₄		COLLAR COLLAR				
	C ₁₁ H ₁₁ NOS	С _S ⊸сн₃	BuLi/THF/-78°/ 0.5-1 hr	CH31	4-(p-Metho 2-ethyl-4	oxyphenyl)-2,5-dimeth	ylthiazole (86), iazole (6)	159

TABLE XXIV. THIAZOLES (ALPHA) (Continued)

Note: References 360-670 are on pp. 355-360.

Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
CLS .	BuLi/ether/-70°	CF2=CCl2	$x = CF = CCl_2$ (59)	364
	BuLi/ether/-75°/	(CH ₃) ₃ SiCl	$X = Si(CH_3)_3$ (77)	160, 461
	BuLi/THF/-78°	C ₂ H ₅ (CH ₃) ₂ SiCl (C ₂ H ₅) ₃ SiCl	$X = Si(CH_3)_2C_2H_5$ (27) $X = Si(C_2H_5)_3$ (30)	462 462
	-	(KMnO4	$X = \begin{bmatrix} N \\ N \end{bmatrix} (-)$	370
	÷	C ₆ H ₅ N ₃	$X = NH_2$ ()	287
	BuLi/ether/-70°- 25°/2 hr	0 (CH ₃) ₂ (CH ₃) ₂ 0 (CH ₃) ₂ 0	$X = \begin{pmatrix} HO \\ (CH_3)_2 \\ O \\ O \end{pmatrix} (CH_3)_2 $ (56)) ₂ 590
	e	HOCH ₂ O	$\begin{array}{c} HO \\ X = \end{array} \begin{array}{c} CH_2OH \\ (23) \end{array}$	590
	Compound Lithiated	Compound Lithiated Conditions Conditions BuLi/ether/-70° BuLi/ether/-75°/ 15 min BuLi/THF/-78° " BuLi/ether/-70°- 25°/2 hr	Compound LithiatedConditionsSubstrate $\widehat{\bigcup}$ BuLi/ether/-70° $CF_2 = CCl_2$ BuLi/ether/-75°/(CH_3)_3SiCl15 minBuLi/THF/-78° $C_2H_5(CH_3)_2SiCl$ "" $C_2H_5)_3SiCl$ "C_2H_5)_3SiCl"C_6H_5N_3 $ C_6H_5N_3$ BuLi/ether/-70°- $O_0^{(CH_3)_2}$ 25°/2 hr $O_0^{(CH_3)_2}$ "HOCH2" $O_0^{(CH_3)_2}$	Compound LithiatedConditionsSubstrateProduct and Yield (%) $\widehat{\bigcup N}$ BuLi/ether/-70° $CF_2 = CCI_2$ $\widehat{\bigcup N}$ $X = CF = CCI_2$ (59) BuLi/ether/-75°/ $(CH_3)_3SiCI$ $X = Si(CH_3)_3$ (77) 15 minBuLi/THF/-78° $C_2H_5(CH_3)_2SiCI$ $X = Si(CH_3)_2C_2H_5$ (27) "" $C_2H_5(CH_3)_2SiCI$ $X = Si(CH_3)_2C_2H_5$ (27) "" $C_6H_5N_3$ $X = NH_2$ $(-)$ - $C_6H_5N_3$ $X = NH_2$ $(-)$ - $C_6H_5N_3$ $X = NH_2$ $(-)$ BuLi/ether/-70°- $O(CH_3)_2$ $(CH_3)_2$ $(CH_3)_2$ " $V = O(CH_3)_2$ $V = O(CH_3)_2$ $(S6)$ " $HOCH_2$ $O = CH_2OH$ $X = V$ " $V = V = O(CH_2OH)$ $X = V$ $(Z3)$

TABLE XXV. BENZOTHIAZOLES (ALPHA)

TABLE XXV. BENZOTHIAZOLES (ALPHA) (Continued)

Note: References 360-607 are on pp. 355-360.

209	Formula	Compound Lithiated	Conditions	Substrate		Product and Yield (%)	Refs.
	C ₈ H ₈ Se	CH2=CHSeC6H5	LDA/THF/-78°/1 hr	D_2O $n-C_5H_{11}CHO$	$CH_2 = C(SeC_6H_5)X$	$ \begin{array}{l} X = D (80) \\ X = CH(OH)C_5H_{11} - n (40) \\ \end{array} $	161 161
	-		LDA/THF, HMPA	n-C ₁₀ H ₂₁ Br		$\mathbf{X} = \mathbf{C}_{10}\mathbf{H}_{21} - n (40)$	161

TABLE XXVI.	VINYL SELENIDES (A	LPHA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	5	Refs
C.H.Se	(se)	BuLi/ether/1 hr	SO ₂	(set x	X=SO ₂ Li (57)	163
		BuLi/ether/ reflux/0.5 hr	CuCl ₂		$X = \int_{Se}^{Se} (47)$	575
		BuLi/ether/ reflux/15 min	"Se"+ Se	8	$X = \underbrace{\int_{Se} (48)}_{Se}$	575
		" BuLi/ether/25° BuLi/ether/ reflux/15 min	CO ₂ CCI ₃ CCI ₃ (C ₂ H ₃ Se) ₂		$X = CO_2H$ (56) X = CI (45) $X = SeC_2H_5$ (66)	163 365 575
			ICl ₂			
		BuLi/ether	a	$\left(\left\langle S_{Se} \right\rangle_{2} \right _{1^{+}Cl^{-}}$	1)	374
C ₂ H ₃ NSe	(Se-CN	BuLi/ether/0.5 hr	CO ₂ DMF	5-Cyano-2-selenophene 5-Formy)-2-selenophene	carboxylic acid () ecarboxamide ()	396 396
	C.S.	BuLi/ether/0.5 hr	CO ₂ DMF	3-Cyano-2-selenophene 2-Formyl-3-selenophene	carboxylic acid (—) ecarboxamide (—)	396 396
C₃H ₆ Se	Se CH.	BuLi/ether/ reflux/2.5 hr	"S"	CH. Se X	X=SH (35)	497
		BuLi/ether/	SO ₂		$X = SO_2Li$ (62)	163
		1 br	CO2		X = CO₂H (43)	163
	ОСН,					
C ₅ H ₆ OSe	(se)	BuLi	DMF DMA	3-Methoxy-2-selenopher 3-Methoxyselenophen-2	enecarboxaldehyde (50) 2-yl methyl ketone (40)	165 165
CeHeSe	Se C2H5	BuLi/ether/reflux	DMF	5-Ethyl-2-selenophenes	carboxaldehyde (64)	463
C7H8O3Se	(Secol	BuLi/ether/ reflux/0.5 hr	"Se" + CICH ₂ CO ₂ CI (H ₃ O ⁺ , NaOC ₂ H ₅	H ₃ Selenolo[2,3-b]selenopi acid (45)	bene-2-carboxylic	575
C _s H ₁₂ OSe	Se OCAHo-1	BuLi	(CH ₃ O) ₂ SO ₂	1-C4H00 Ser X	X = CH ₃ ()	464
		2	CH,CHO		$X = CH(OH)CH_{3}$ ()	465
P		2	DMF DMA		X = CHO () $X = COCH_3$ ()	464 464
			8		ОН	
		<u>а</u> -	\bigcirc		x = (-)	465
			C.H.CH.CI		$X = CH(OH)C_6H_5$ () $X = CH_C_2H_5$ ()	465
		-	C ₆ H ₅ CO ₂ OC ₄ H ₉ -1		$X = OC_4 H_9 - t$ ()	464
	OC4Ho-1			OC4H9-1		
	L _{se})	BuLi/ether/-30 ^a - reflux/1 hr	DMF	Se CH(OLi)N(C	CH ₃) ₂ (-)	148
		-0-	DMA	3-1-Butoxy-2-selenopher-	enecarboxaldehyde (32) 2-yl methyl ketone (55)	466
Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs	
---	---	--	-----------	--	------------	
C₀H₁₄O₂Se	CH(OC ₂ H ₅) ₂	BuLi/ether/reflux BuLi/ether/ -30° to -10°	I2 DMF	2-(Diethoxymethyl)-5-iodoselenophene () 2,5-Selenophenedicarboxaldehyde, 5-(diethyl acetal) (40)	396 467	
	CH(OC ₂ H _s) ₂	BuLi/ether/reflux	Ia	3-(Diethoxymethyl)-2-iodoselenophene ()	396	
	36	BuLi/ether/-40°/ 1 hr	DMF	2,3-Selenophenedicarboxaldehyde, 3-(diethyl acetal) (80)	283	
C11H16LiNO2Se	OC4H9-t Se CH(OLi)N(CH3)2	BuLi/ether/-30°- reflux/1 hr	DMF	3-t-Butoxy-2-selenophenecarboxaldehyde (90), 3-t-butoxy-2,5-selenophenedicarboxaldehyde (1	148 0)	
	r-C4H40 CH(OLi)N(C	CH ₃) ₂ BuLi/ether/reflux	DMF	4-t-Butoxy-2,3-selenophenedicarboxaldehyde	148	
6 U 0 S	1-C4H90 OC4H9-1	1 hr	D.C.	(50)		
C ₁₂ H ₂₀ O ₂ Se	(Se)	BuLl/ether/-20 reflux/1 hr	DMF	3,4-Di-f-butoxy-2-selenophenecarboxaldehyde (5)	148	
C14H24O4Se	(C2H3O)2CH	BuLi/ether/ IC ₂ H ₅) ₂ -50°/5 hr	DMF	2,3,5-Selenophenetricarboxaldehyde, 3,5-bis(diethyl acetal) (40)	283	
	(C2H3O)2CH CH(OC	₂ H ₅) ₂ BuLi/ether/-40°/ 1 hr	DMF	2,3,4-Selenophenetricarboxaldehyde, 3,4-bis(diethyl acetal) (40)	283	
C19H34O6Se	(C ₂ H ₃ O) ₂ CH Se CH(OC	(2H5)2 BuLi/"long time"	DMF	2,3,4,5-Selenophenetetracarboxaldehyde, 2.3,4-tris(diethyl acetal) ("good")	441	

TABLE XXVII. SELENOPHENES (ALPHA) (Continued)

Note: References 360-607 are on pp. 355-360.

213

TABLE XXVIII. TELLUROPHENES (ALPHA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
C₄H₄Te		BuLi/ether/25°/ 45 min	CO2	$\langle T_{Te} \rangle_{\chi}$ X = CO ₂ H (37)	164
		BuLi/ether/25°/ 0.5 hr	Cl ₃ CCCl ₃	$\mathbf{X} = \mathbf{C}\mathbf{I} (53)$	568
		**	Br ₃ CCBr ₃	$\mathbf{X} = \mathbf{Br} (44)$	568
		BuLi/ether/25°/ 45 min	(CH ₃ O) ₂ SO ₂	$\mathbf{X} = \mathbf{C}\mathbf{H}_3 (75)$	164
		22	CH ₃ CHO	$X = CH(OH)CH_1$ (6	0) 164
		73.	C ₆ H ₅ N(CH ₃)CHO	X=CHO (24)	164
		BuLi/ether/25°/ 0.5 hr	"Te"	$\left(\left\langle \left\langle T_{Te} \right\rangle \right\rangle_{2} \right\rangle_{X} $ X=Te ()	568
				X=I ⁺ Cl ⁻ ()	568
C ₅ H ₆ Te	Te CH ₃	BuLi/ether/25°/ 45 min	CO ₂	5-Methyl-2-tellurophenecarboxylic acia (35)	164

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C ₂ HClF ₂	CF2=CCIH	BuLi/ether/-100° to -78°/0.5-1 hr	CH ₃ COCH ₃	2-Chloro-3-methylcrotonic aci	d (15)	172
			CF3COCF3	CF ₂ =CCIX X=	C(CF3)2OH (56)	172
		м	CH3COCF3	x =	С(CF ₃)CH ₃ (61) ОН	172
		*	(C2H3)3SiCl	X =	Si(C2H3)3 (10)	173
C ₂ HCl ₂ F	CFCI=CCIH	BuLi/ether/-100° to -78°/0.5-1 hr	C6H3CHO	(Z)-2-Chlorocinnamic acid (I)	(44)	172
			CF3COCF3	CFCI=CCIX X=	C(CF3)2OH (66)	172
		"	CH ₃ COCH ₃	X =	C(CH3)2OH (60)	172
		H	(C2H3)3SiCl	X =	Si(C2H3)3 (55)	173
C₂HCl3	CCI2=CCIH	BuLi/THF, ether, pet. ether/ -110°/50 min	CO2	Trichloroacrylic acid (81)		167, 168
C ₂ HF ₃	CF ₂ =CFH	BuLi/ether/-100° to -78°/0.5-1 hr	CH ₃ COCH ₃	2-Fluoro-3-methylcrotonic aci	d (30)	172
		H	CO ₂	CF ₂ =CFX X=	CO ₂ H (57)	172
			CF,COCF,	X=	C(CF3)2OH (63)	172
		2	(C2H5)3SiCI	X =	Si(C2H3)3 (79)	173
	a a					
C ₂ H ₂ Cl ₂		BuLi/THF, ether, pet. ether/ -100°/20 min	CO2	Chloropropiolic acid (100)		167, 168
	Q					
	a	BuLi/THF, ether, pet. ether/ -110°/40 min	Br ₂	(Z)-1-Bromo-1,2-dichloroethy	lene (26)	167
		*	CO2	(E)-2,3-Dichloroacrylic acid	(99)	167, 168
					450	0

TABLE XXIX. FLUORO-, CHLORO-, AND BROMOALKENES (ALPHA)

Fo	ormula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C	2H3Cl	CHCI=CH2	BuLi/THF, ether, pet. ether/-110°/ 70 min	CO ₂	2-Chloroacrylic acid (100)	167, 168
C.	H7BrO	Br OC ₂ H ₅	BuLi/THF, hexane/ -100°	CO ₂	(Z)-2-Bromo-3-ethoxyacrylic acid (22),(Z)-3-ethoxyacrylic acid (10)	174a
		Br OC, H,	BuLi/ether/ -78°-50°/5 hr	Cyclopentanone (H ₃ O ⁺)	α -Bromo- $\Delta^{1,\alpha}$ -cyclopentaneacetaidehyde (30)	1745
				t-C4H9CHO	(E)-2-Bromo-1-ethoxy-4,4-dimethyl-1- penten-3-ol (58)	1745
G	H,CIO	CI OC ₂ H ₅	BuLi/THF, hexane/ -100°	CO ₂	(Z)-2-Chloro-3-ethoxyacrylic acid (40)	174a
		a	" 2 BuLi/THF, hexane/ -100°	Cyclohexanone	α -Chloro- $\Delta^{1,\infty}$ -cyclohexeneacetaldehyde (40) Ethyl $\Delta^{1,\infty}$ -cyclohexeneacetate (20)	174a 174a
		OC ₂ H ₅	BuLi/THF, hexane/ -100 ^s	CO ₂	(E)-2-Chloro-3-ethoxyacrylic acid (100)	174a
C,	₅H ₇ Cl	C ₆ H ₅ CI	BuLi/-115°/2 min	CO2	Phenylacetylene (8), 1 (13)	169
		a	BuLi/THF, ether, hexane/—80°/ 15 min	CO ₂	(E)-2-Chlorocinnamic acid (90)	169
			2	C₂H₃OD	(E)-β-d-β-Chlorostyrene (80)	169
¢,	14H₀Cl3	o-CIC ₆ H ₄ CI	Bul.i/THF, ether, pet. ether/-108°/ 45 min	COz	2-Chloro-3,3-bis(o-chlorophenyl)acrylic acid (76)	171
		p-CIC ₆ H ₄ p-CIC ₆ H ₄	Bul.i/THF, ether, pet. ether/ -41°/20 min	CO2	2-Chloro-3,3-bis(p-chlorophenyl)acrylic acid (86)	171, 170
C,	14H10Cl	p-CIC ₆ H ₄ C ₆ H ₅	BuLi/THF/-108°/ 40 min	CO ₂	(Z)-2-Chloro-3-(p-chlorophenyl)-3- phenylacrylic acid (84)	170
		p-CIC ₆ H ₄	BuLi/THF/-108°/ 40 min	CO2	(E)- 2-Chloro-3-(p-chlorophenyl)-3- phenylacrylic acid (87)	170
c,	HiiCl	C ₆ H ₅ C ₆ H ₅	BuLi/THF, ether, pet. ether/ -93°/17 min	Br ₂	C_6H_5 C_6H_5 $X = Br$ (94)	358
			BuLi/THF, ether, pet. ether/	l,	X=1 (98)	358

TABLE XXIX. FLUORO-, CHLORO-, AND BROMOALKENES (ALPHA) (Continued)

TABLE XXIX. FLUORO-, CHLORO-, AND BROMOALKENES (ALPHA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs
C ₅ H ₄ N ₄	CT N	C ₆ H ₅ Li/ether/ 25°/3 hr*	CO2	$ \begin{array}{c} CO_{2}H \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $		472
C ₆ H ₆ N ₄	CH3 CH3	C ₆ H ₅ Li/ether/ 25°/3 hr*	CO2	$CH_{3} \xrightarrow{CO_{2}H} N^{-} N (11)$ $CH_{3} \xrightarrow{CO_{3}H} N^{-} N (11)$		472
	CH3	C ₆ H ₅ Li/ether/ 25°/3 hr*	co,	$(H_3) \xrightarrow{N^-}_{N^-N^-} (5)^*$		472
	CH ₃ N N N N	C ₆ H ₅ Li/ether/ 25°/3 hr*	CO2	$(H_3) = (18)$		472
C7H3N3O2	N N N-O	BuLi/ether, benzene/-20°/ 1 hr	CH3COCH3	$ \begin{array}{c} & (C(CH_3)_2OH \\ & (64) \\ & N_{-O} \end{array} $		473
C ₈ H ₆ N ₂ O ₂	C ₆ H ₅ NO ⁻ O ⁻	BuLi/ether, benzene/-20°/	СН₃СНО	C ₆ H ₅ NOTO-	X = CH(OH)CH ₃ (43)	473
			CH ₃ COC ₃ H ₇ -i		$X = C(CH_3)C_3H_7 - i (39)$ OH	473
		BuLi/THF/-20°/ 1 hr	(C ₆ H ₅) ₂ CO		$X = C(C_6H_5)_2OH$ (84)	474
C ₈ H ₁₂ N ₂ O ₂		BuLi/ether, benzene/-20°/ 1 hr	CH ₃ COCH ₃	$C(CH_3)_2OH (57)$		473

TABLE XXX. MISCELLANEOUS MESOIONIC COMPOUNDS

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
				N(CH ₃) ₂	
C ₂ H ₁₁ N	C ₄ H ₃ N(CH ₃) ₂	BuLi/hexane/ reflux/16 hr	CF3COCF3	$X = C(CF_3)_2OH (49)$	179
			CH ₃ COC ₂ H ₅	$X = C(CH_3)C_2H_5 (20)$ $ $ OH	179
			Cyclohexanone	X = (31)	179
		÷.	\bigcirc	X= (14), OH	179
			C_H_COCH,	X=C(CH ₂)C ₂ H ₃ (34)	179
		Buli/hexane, TMEDA/25°/4 hr	(C ₆ H ₅) ₂ CO	$X = C(C_6H_3)_2OH$ (71)	63, 179, 180
C _s H _D N	o-CH3C6H4N(CH3)2	BuLi/ether/25°/ 40 hr	D ₂ O	$ \begin{array}{c} N(CH_3)_2 \\ \downarrow \\ CH_2D \\ (I). \end{array} \begin{array}{c} N(CH_3)_2 \\ \downarrow \\ CH_2D \\ (II) \end{array} $	63
	p-CH3C6H4N(CH3)2	BuLi/hexane, TMEDA/25*/	D₂O	(I+II, 94) (I:II, 1.5:1) 2-d-N,N-Dimethyl-p-toluidine (>90)	63
		3 hr BuLi/hexane, TMEDA/25 ⁹ /4 hr	(C ₆ H ₅) ₂ CO	[6-(Dimethylamino)-m-tolyl]diphenyl- methanol (80)	63, 359
C ₉ H ₁₃ NO	m-CH ₃ OC ₆ H ₄ N(CH ₃) ₃	BuLi/ether/35% 12 hr	(C ₆ H ₃) ₂ CO	[2-(Dimethylamino)-6-methoxyphenyl]- diphenylmethanol (71)	19
C10H9N	$\langle \rangle$	BuLi/ether/25°/ 8 hr	CO2	1-Phenylpyrrole-2-carboxylic acid (14)	81
	Ċ ₆ H5	2 BuLi/ether/ reflux/14 hr	÷	(5) (5)	81
	NH ₂	BuLi/ether/ reflux/50 hr	CO2	NH (10)	486
C11H14CINO	p-CIC ₆ H ₄ NHCOC ₄ H ₉ -t	Buli/THF/0°/	CH ₃ I	4'-Chloro-o-pivalotoluidide (71)	181a
			(CH ₃ S) ₂	4'-Chloro-2'-(methylthio)pivalanilide (79)	181a

TABLE XXXI. MONO-, DI-, AND TRIARYLAMINES (ORTHO)

	Compound Entimated	Conditions	Substrate	Froduct and field (%)	Rets.
C11H14CINO (Contd.)	p-CIC ₆ H ₄ NHCOC ₄ H ₉ -t	Ĥ	o-FC ₆ H₄CN	2-t-Butyl-6-chloro-4-(o-fluorophenyl)- quinazoline (57)	181a
C11H13NO	C ₆ H ₅ NHCOC ₄ H ₉ -t	BuLi/ether, THF/	(CH ₃ S) ₂	2'-(Methylthio)pivalanilide (78)	181a
		23718 nr	DMF	2'-Formylpivalanilide (53)	181a
C12HoNS		BuLi/ether/25°/ 30 hr	CO2	$X = CO_2 H (53)$	177
		-	CH4CO4Li	$X = COCH_{1}$ (40)	177
			C ₂ H ₅ CO ₂ Li	$X = COC_2H_5 (33)$	177
		10-11 I	C ₆ H ₅ CO ₂ Li	$X = COC_6H_5 (41)$	177
C12H17NO2	m-CH3OC6H4NHCOC4H9-1	BuLi/THF/0%	(C ₆ H ₃) ₂ CO (CH ₃ S) ₂	$\mathbf{X} = C(C_{6}H_{5})_{2}OH (70)$ 3'-Methoxy-2'-(methylthio)pivalanilide (82)	178 181a
		2 Hr **	C ₆ H ₃ CHO	3'-Methoxy-2'-[(a-phenyl)hydroxymethyl]-	181a
	p-CH3OC6H4NHCOC4H9-1	BuLi/ether,	(CH ₃ S) ₂	4'-Methoxy-2'-(methylthio)pivalanilide (53),	181a
		1HF/25718 tr		2',5'-bis(methylthio)-4'-methoxypival- anilide (28), 4'-methoxy-3'-(methylthio)- pivalanilide (15)	
				ÇO₂H	
	~s~			and and	
C ₁₃ H ₁₁ NS	CH ₃	BuLi/ether/30 hr	CO2	$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	177, 18
C14H11N	CLN C6H5	BuLi/ether/ reflux/12 hr	CO2	1-(o-Carboxyphenyl)indole-2-carboxylic acid (15), (42)	83
C ₁₄ H ₁₃ N		BuLi/THF, ether/ 25°/5 hr	CO ₂	$ \begin{array}{c} $	560
		BuLi/ether/ reflux/44 hr	(C ₆ H ₅) ₃ SiBr	$\mathbf{X} = \mathrm{Si}(\mathbf{C}_{6}\mathbf{H}_{5})_{3} (12)$	452
C14H13NS	CCLN C,H,	BuLi/ether/ 30 hr	CO2	$() \qquad \qquad$	177, 18
C ₁₀ H ₁₁ NS	~s Q	BuLi/ether/	CO2	S (41)	183b

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C16H11NS (Contd.)	CLN H H	BuLi/ether/ 25ª	CO2	(94)	176
C16H13N	NHC ₆ H ₅	BuLi/ether/25°/ 20 hr	CO2	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	1815
	NHC ₆ H ₅	BuLi/ether/25°/ 20 hr	CO2	2-Anilino-3-naphthoic acid (53)	181b
C20H13NS		-BuLi/ether/ reflux/4.5 hr	CO2	$ \begin{array}{c} $	182
	C S N H	BuLi/ether/ reflux/5 hr	CO2	(SO)	182
		BuLi/ether/ 25°/23 hr	CO,		182

TABLE XXXI. MONO-, DI-, AND TRIARYLAMINES (ORTHO) (Continued)

TABLE XXXII. &-LITHIO-(N-ALKYLIDENE)ARYLAMINES (ARYL ISOCYANIDES) (ORTHO)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Ref.
C ₁₁ H ₁₄ LiN	C ₆ H ₅ N=C(Li)C ₄ H ₉ -t ^a	t-BuLi/ether, TMEDA/25%/4 br	02	N=C(X)C4H9-t	X=OH (29)	184
		,, ,,	CH₃I CO₅ (H₃O⁺)	Anthranilic acid (54)	X = CH ₃ (92)	184 184
			SCl ₂	N -C4H9-1	X=S (65)	184
			(CH ₃) ₂ SiCl ₂	~ ^	$X = Si(CH_a)_a$ (53)	184
			(CH ₂),GeCl ₂		$X = Ge(CH_2)_2$ (68)	184
			(CH ₃),SnCl ₂		$X = Sn(CH_3)_2$ (41)	184
		(11)	C.H.PCl		$X = PC_sH_s$ (52)	184
		**	(C6H5)2SiCl2		$X = Si(C_6H_5)_2$ (63)	184

* This compound was formed by the reaction of phenyl isocyanide and t-BuLi.¹⁸⁴

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
1.1.1	CH2N(CH3)2			CH2N(CH3)2		
C,H,INS	\sqrt{s}	BuLi/ether/ 25°-35°/4 hr	D ₂ O	\sqrt{s}_x	X = D (80)	134, 43
		BuLi/ether/	DMF		X=CHO (75)	134, 43
			C.H.CN(H.O")		X=COC.H. (54)	134 43
			(C.H.)-CO		$X = C(C,H_{\star}) - OH$ (67)	134 43
			p-CH-C-H-SO-Br		X = Br (32)	134
			p-CH ₃ C ₆ H ₄ SO ₂ Cl		X = CI (25)	134
	CH2N(CH3)2			CH3 CH2N(CH3)2	CH2N(CH3)2	
C ₇ H ₁₂ N ₂ O	CH, ON	BuLi/THF	СН	CH ₃ O ^N (0),	C ₂ H ₅ O ^N (II)	186
C _s H ₁₁ N	C&H3CH3NHCH3	BuLi/ether, TMEDA/ 5 hr	D₂O	$(1+11,-)$ CH_2NHCH_3 X	(1:11, 1:1) X = D (100) OH	188
					\leftarrow	
			Cyclohexanone		X= (51)	188
			C.H.CHO		X = CH(OH)C.H. (63)	188
			C.H.COCH.		$X = C(CH_{\star})C_{\star}H_{\star}$ (40)	188
					OH	100
		0	C6H3COC2H3		$X = C(C_2H_5)C_6H_5 (43)$	188

TABLE XXXIII. ARALKYLAMINES AND ALLYLAMINES (ORTHO, BETA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C _R H ₁₁ N (Contd.)	C ₆ H ₅ CH ₅ NHCH ₃	" BuLi/hexane, TMEDA/ 0.5 hr	(C6H3)2CO C6H3CHO	2-[(Methylamino)methyl]-a, m-xylene-a,a'-diol (65-	$X = C(C_6H_5)_2OH$ (48-52) α' -diphenyl- 75)	188 188
C _s H ₁₃ NS	CH ₃ S CH ₂ N(CH ₃) ₂	BuLi/ether/ 25°-35°/4 hr	(C ₆ H ₅) ₂ CO	2-[(Dimethylamino)methyl]- methyl-3-thiophenemetha	α,α-diphenyl-5- nol (65)	43, 13
C₀H₁₁Cl₂N	2,4-Cl ₂ C ₆ H ₃ CH ₂ N(CH ₃) ₂	BuLi/ether/ 25°/10 min	₀-ClC₅H₄CN	2'-Chloro-3,5-dichloro-2- [(dimethylamino)methyl]b Çl	enzophenone (70)	23
C ₉ H ₁₂ CIN	0-CIC ₆ H ₄ CH ₂ N(CH ₃) ₂	BuLi/ether/ 25°	Cu Br	CH ₂ N(CH ₃) ₂	X=Cu (25)	190
		BuLi/ether/ 25°/24 hr	(C ₆ H ₅) ₂ CO	*	$X = C(C_6H_5)_2OH$ (81)	45
	p-CIC ₆ H ₄ CH ₂ N(CH ₃) ₂	BuLi/ether/ 25°	CuBr		$\mathbf{X} = \mathbf{Cu}$ (41)	190
		BuLi/ether/	(CH ₃ S) ₂		X=SCH ₃ (77)	23
		0°/12 hr BuLi/ether/	CICON(CH ₃) ₂		$X = CON(CH_3)_2$ (85)	24
		25/3 hr	I-CAHONCO		$X = CONHC_4H_9 - t (29)$	24
		0°/12 hr	6-CIC ₆ H ₂ CN (H ₃ O ⁺) e-FC ₆ H ₄ CN (H ₃ O ⁺)		$X = COC_{e}H_{a}F - o (78)$	23
		BuLi/ether/	C ₆ H ₅		x = HO (38)	24
		25°/3 hr BuLi/ether/	(C6H3S)2		$X = SC_6H_5 (90)$	23
		0°/12 hr BuLi/ether/	(C6H5)2CO		$X = C(C_6H_5)_2OH$ (82)	45
C ₉ H ₁₂ FN	o-FC ₆ H ₄ CH ₂ N(CH ₃) ₂	25°/24 hr BuLi/ether/ 25°/1 hr	(C ₆ H ₅) ₂ CO	[α-(Dimethylamino)-3-fluoro tolyl]diphenylmethanol (0- <i>0</i> - 33)	45
C ₉ H ₁₀ N	C ₆ H ₅ CH ₂ N(CH ₃) ₂	BuLi/ether/ 25°	-	CH ₂ N(CH ₃) ₂	X=Li (100)	9
		Bulli/ether/	D₂O		X=D (94)	30
		25 [*] /24 hr BuLi/ether/	CuBr		X=Cu (44)	190, 4
		25° BuLi/ether/	AgBr		X=Ag (61)	304
		25°/65 hr BuLi/ether/	CO ₂ (CH ₂ N ₂)		X=CO ₂ CH ₃ (35)	185
		25° BuLi/ether/	CH ₂ I ₂		X=1 (64)	293
		25°/18 hr BuLi/ether/	CH ₃ CN		X=COCH ₃ (25)	476
		25°/20 hr BuLi/ether/	CCl ₃ CCl ₃		X=Cl (63)	293
		25°/18 hr BuLi/ether/	DMF		X=CHO (80)	23
		Contraction of the Rest of the American				
		25°/27-29 hr BuLi/ether/	CH ₃ COCH ₃		$X = C(CH_3)_2OH$ (46)	33

1.		
TABLE XXXIII.	ARALKYLAMINES AND ALLYLAMINES (ORTHO, BETA) (Continued)	

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Reis.
CoH13N (Contd.)	C ₆ H ₃ CH ₂ N(CH ₃) ₂	BuLi/ether/ 25%18 hr	(CH ₃) ₂ CBrCBr(Cl	H ₃) ₂ CH ₂ N(CH ₃) ₂	X = Br (69)	293
		-	$\overline{\mathbf{x}}$		$x = CH(OH)CH_2$ (-)	477
			CH ₃ CH ₂ CH	0	сн ₃	
		BuLi/ether/ 25°/18 hr	\bigcirc		X = (36)	33
CEC		BuLi/ether/	o-CIC ₆ H ₄ CHO m-CIC ₆ H ₄ CN (H-O ⁺)		$X = CH(OH)C_{b}H_{4}CI-o$ (80) $X = COC_{b}H_{4}CI-m$ (50)	33 23
		25727-29 m	o-CIC.H.CN		$X = COC_6H_4Cl-o$ (90)	23
		-+1	(H ₃ O ⁺) p-ClC ₆ H ₄ CN (H O ⁺)		$X = COC_6H_4Cl-p$ (85)	23
		BuLi/ether/ 25°/30 hr	C ₆ H ₅ CHO		$\mathbf{X} = \mathbf{CH}(\mathbf{OH})\mathbf{C}_{6}\mathbf{H}_{5} (78)$	33
		BuLi/ether/ 25°/18 hr	C ₆ H ₅ CN (H ₃ O ⁺)		$X = COC_6H_s$ (63)	33, 344
		BuLi/ether/ 25°/30 hr	C ₆ H ₅ NCO		$X = CONHC_6H_5$ (65)	33
		BuLi/ether/ 25°/18 hr	p-CH3OC6H4CHC		$X = CH(OH)C_6H_4OCH_3-p (78)$	33
			C.H.		$x = \int_{0}^{C_6H_5}$	
		BuLi/ether/ 25°/ "overnight"	() Const		HO (28)	24
		BuLi/ether/ 25°/30 hr BuLi/ether/ 25°/18 hr BuLi/ether/ 25°/27 hr BuLi/ether/ 25°/30 hr BuLi/ether/ 25°/30 hr	C ₆ H ₄ COC ₄ H ₉ -n 3,4,5-(CH ₃ O) ₃ C ₆ J 3,4,5-(CH ₃ O) ₃ C ₆ J (H ₃ O [*]) (C ₆ H ₃) ₂ CO C ₆ H ₅ CO ₂ C ₂ H ₅	H2CHO H2CN Bis[(α-dimethylamino)-ο-το	$\begin{split} X &= C(C_{6}H_{5})C_{4}H_{0}-\pi ("good") \\ & \\ OH \\ X &= CH(OH)C_{6}H_{2}(OCH_{3})_{3}- \\ & 3,4,5 (56) \\ X &= COC_{6}H_{2}(OCH_{3})_{3}- \\ & 3,4,5 (90) \\ X &= CO(C_{6}H_{3})_{2}OH (77) \\ Iyl]phenylmethanol (59) \end{split}$	33 33 23 33, 45, 33
		BuLi/hexane/ reflux/6 hr	CoCl ₂		-Co ⁽⁴⁵⁾	300
PRC .		BuLi/ether/ 25°/90 hr	∮AgBr₂		AgLi (10)	305
		BuLi/hexane/ reflux/16 hr	Fe(CO) ₃	N(CH ₃) ₂ (-)	299
		<u>,</u>	Ni(CO)4	N(CH ₃) ₂ (-	-)	299
		BuLi	[(C2H3)3P]2NiCl2	Ni	(60)	303

TABLE XXXIII.	ARALKYLAMINES AND ALLYLAMINES (ORTHO, BETA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
CoH13N (Contd.)	C ₆ H ₅ CH ₂ N(CH ₃) ₂	BuLi/ether/ 25°	(CH ₃) ₂ SnBr ₂	$R = CH_3 (CH_3)_2$ $R = CH_3 (50)$	480
			(CH ₃)C ₆ H ₅ SnBr ₂	$\dot{\mathbf{B}}\mathbf{r}$ $\mathbf{R} = \mathbf{C}_{6}\mathbf{H}_{5} (90)$	481
		BuLi/ether/ 25°	(CH ₃) ₂ SnBr ₂	$\left(\underbrace{\begin{array}{c} \begin{array}{c} CH_2 N(CH_3)_2 \\ 2 \end{array}}_{2 \text{ Sn}(CH_3)_2} \right)^{(-)}$	480
				Me = Pd (-)	
		BuLi	[(C2H3)2S]2PdCl2	Me CH ₂ N(CH ₃) ₂	303
		5	[(C2H3)2S]2PtCl2	cis Me=Pt (-)	303
		-	(C ₆ H ₅) ₃ PAuBr	$(\mathbf{A}_{Au}^{N(CH_3)_2} \cdot P(C_6H_5)_3)^{(65)}$	307
C10H12F3	N m-CF ₃ C ₆ H ₄ CH ₂ N(CH ₃) ₂	BuLi/ether/ 25°/1 hr	(C ₆ H ₅) ₂ CO	$[\alpha^6-(Dimethylamino)-\alpha^2,\alpha^2,\alpha^2-trifluoro-2,6-xylyl]diphenylmethanol (72)$	45
C10H13N	$O_2 \qquad O \qquad CH_2 N(CH_3)_2$	BuLi/ether/ 25°/1 hr	(C ₆ H ₅) ₂ CO	[α-(Dimethylamino)-5,6-(methylenedioxy)- o-tolyl]diphenylmethanol (60)	483
C10H14C	INS CI CH ₂ N(CH ₃) ₂	BuLi/ether/ 0°/2 hr	(C ₆ H ₄) ₂ CO	[5-Chloro-α-(dimethylamino)-3- (methylthio)-o-tolyl]diphenylmethanol (35)	23
		000-10		CH ₂ N(CH ₃) ₂	
C ₁₀ H ₁₃ N	p-CH ₃ C ₆ H ₄ CH ₂ N(CH ₃) ₂	BuLi/ether/ 25°	CuBr	CH ₃ X = Cu (66)	190, 39
		BuLi/ether/ 25°/30 hr	C ₆ H ₃ CN	$X = COC_6 H_5 (80)$	23
		BuLi/ether/ 25°/"overnight	C ₆ H ₅	$\mathbf{X} = \frac{\mathbf{C}_{6}\mathbf{H}_{5}}{\mathbf{HO}}$ (21)	24
		BuLi/ether/	(CeHs)2CO	$\mathbf{X} = \mathbf{C}(\mathbf{C_6H_5})_2\mathbf{OH} (82)$	45
C10H13N	0 m-CH ₃ OC ₆ H ₄ CH ₂ N(CH ₃) ₂	25°/24 hr BuLi/ether	Ethylene	[2-(Dimethylamino)methyl]-6-	189
		BuLi/ether/	oxide (C ₆ H ₅) ₂ CO	methoxyphenethyl alcohol () [α-(Dimethylamino)-6-methoxy-o-	19, 45, 189
	o-CH₃OC₅H₄CH₂N(CH₃)₂	27°/2 hr BuLi/ether/ 27°/2 hr	(C ₆ H ₃) ₂ CO	tolylydiphenylmethanol (79) [α-(Dimethylamino)-2-methoxy-m- tolyl]diphenylmethanol (58), [α-(dimethylamino)-3-methoxy-o- tolyl]diphenylmethanol (<5)	19
			2.5	CH ₂ N(CH ₃) ₂	100
	p-CH ₃ OC ₆ H ₄ CH ₃ N(CH ₃) ₂	BuLi/ether/ 27°/24 hr	D ₂ O	CH_{3O} (III) X = D (70)	19
		BuLi/ether/	CuBr	X=Cu (38)	190
		BuLi/ether	Ethylene	$X = (CH_2)_2OH ()$	189

TABLE XXXIII. ARALKYLAMINES AND ALLYLAMINES (ORTHO, BETA) (Continued)

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
	C10H15NO (Contd.)	p-CH3OC6H4CH2N(CH3)2	BuLi/ether/ 25°/20 hr	Cyclopentanone		x= HO (32)	24
			1	OP		X= HO (39)	24
				С₅н₅Сн₂Сно О		$X = CH(OH)CH_2C_6H_5 (10)$ OC_6H_5	24
				OC ₆ H ₅		X = HO (12)	24
726			,ñ	SC ₆ H ₅		X = HO (12)	24
			<i>4</i> 1	C ₆ H ₅		x = HO (20)	24
			ō	CH2C6H	5	x = HO (31)	24
				OC ₆ H ₅			24
			" BuLi/ether/	(C ₆ H ₅) _z CO		$X = C(C_{s}H_{s})_{2}OH$ (80)	19, 45,
			27°/24 hr				180, 189
					(III), CH ₂ N(Cl	H ₂) ₂	
			BuLi/ether, TMEDA/ 27°/15 hr	D ₂ O	сн _з о		
			BuLi/ether, TMEDA/ 27°/2 hr	(C ₆ H ₅)₂CO	(18) (48) (7) (55)	X = D $X = C(C_6H_5)_2OH$	19 19, 180
	C11H14CINO	CH ₃ CH ₃	BuLi/ether/ 0°/4 hr	(CH ₃ S) ₂	2-[4-Chloro-2-(methylthio)pl dimethyloxazolidine (80)	nenyl]-2,3-	23
1	C ₁₁ H ₁₅ NS	C ₆ H ₅ S	BuLi/ether/ 0°/1 hr	D₂O	C6H5S	X=D (>90)	23
1		C11211(C113/2		(CH ₃ S) ₂	$X CH_2N(CH_3)$	X=SCH ₃ (>90)	23
	C ₁₃ H ₁₅ NO	C6H3CH2NO	BuLi/ether/ 25°/20 hr	Сі СНО	CH ₂ N CH(OH)X	$\mathbf{x} = \underbrace{\mathbf{x}}_{\mathbf{N}} \underbrace{\mathbf{C}}_{\mathbf{N}} (-)$	187
						x= (-)	187
			-	3,4-Cl₂C ₆ H₃CHO		S X=C ₆ H ₃ Cl ₂ -3,4 ()	187
	CuH ₁₇ N	2,4-(CH ₃) ₂ C ₆ H ₃ CH ₂ N(CH ₃) ₂	BuLi/ether/ 25°/24 hr	(C ₆ H ₅) ₂ CO	[2-[(Dimethylamino)methyl]- dimethylphenyl]diphenylme	3,5- ethanol (52)	45
		C ₆ H ₅ C(CH ₃) ₂ N(CH ₃) ₂	BuLi/ether/	(C ₆ H ₅) ₂ CO	[(a-(Dimethylamino)-o-cume	nyl]-	33

TABLE XXXIII. ARALKYLAMINES AND ALLYLAMINES (ORTHO, BETA) (Continued)

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
		Sale water			CH ₂ N(CH	2)2	
	C11H17NO2	3,4-(CH3O)2C6H3CH2N(CH3)2	BuLi/ether/	I2		X = I (77)	23
			0°/3 hr		CH ₃ O X		
					OCH3		
			**	Ethylene		$X = (CH_2)_2 OH$ (60)	23
			200	oxide		N-CHIODOL (CD	27
				CH-OCH-CI		$X = CH_0OCH_3 (65)$ $X = CH_0OCH_3 (66)$	23
		CH.		culoculo		it cuite and (out	
		C ₆ H ₅					
	C.H.N	Y	Bul i/ether/	CHJ	1-Methyl-2-(a-tolyl)piperidine	(93)	74
č.	-12-17-1	\smile	25°/20 hr		i moniji 2 (v miji)pipinom		
	2. 23. 23.	\sim	Sec. 19		Same to have not the owned		
	C12H17NO	p-CH ₃ C ₆ H ₄ CH ₂ N	BuLi/ether/	C ₆ H ₅ CHO	[5-Methyl-2-(4-morpholinome	sthyl)]	187
			25 720 m	and a state	benzhydrof (27)		
	C12H21NSi	0-(CH3)3SiC6H4CH2N(CH3)2	BuLi/ether/	(CH ₃) ₃ SiCl	N,N-Dimethyl-bis-2,6- (trimethylsilyl)benzylamine	()	9
					(a month and the one fundation	2-6	
	CIDHINN	C ₆ H ₅ CH ₂ NHC ₆ H ₅	BuLi/hexane,	CO2	2-Phenylphthalimidine (8),		188
			TMEDA/				
					CH-NHC-H-		
					FY	X=CO ₂ H (61)	
					×	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
				C ₆ H ₅ CHO		$X = CH(OH)C_6H_5$ (72-75)	188
				CeH,COCH,		$X = C(CH_2)C_2H_2$ (10)	188
							100
						ОН	
				Å		× ^{OH}	
				NY	N	X= () (02-0	188
				L	el l		
				(CoHs)2CO		$X = C(C_eH_e) - OH$ (86)	188
		and the second s					
		CH ₂ N(CH ₃) ₂			CH ₂ N(CH ₃) ₂	X CH ₂ N(CH ₃) ₂	
	CHN	N	Def Tederal		AX		
	Chinista		25°/24 hr	D20	(IV),	(M)	
2				(C.H.)-CO	(IV:V, 12:88) (IV+V 70) (IV:V 8:02)	X = D	484
			BuLi/ether/	CO ₂ (O ₂)	N-Methyl-1,8-naphthalenedic	$A = C(C_6H_5)_2OH$ arboximide (57)	191
			25°			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		CH_N(CH_)			X CH N(CH)	CH_N/C	H_)_
		FYY	BuLi/ether/	D-0	Chi2in(chi3)	(VI) YY	VIII
			25°	210			***J
					02557 S.M.	· · · · · ·	
				CO.(CH.N.)	(VI:VII, 2:1) VI (20) VII (22)	X=D X=CO_CP	484
			BuLi/ether/	(C ₆ H ₃) ₂ CO	(VI+VII, 79) (VI:VII, 43:58	$X = C(C_{e}H_{e})_{2}OH$	191
			25°/48 hr	1111 Per 201			
					CH-NIC	(de	
	C13Ha1N	p-t-C4H9C6H4CH2N(CH3)2	BuLi/hexane/	CoCl ₂	PT	(33)	300

TABLE XXXIII. ARALKYLAMINES AND ALLYLAMINES (ORTHO, BETA) (Continued)

TABLE XXXIII. ARALKYLAMINES AND ALLYLAMINES (ORTHO, BETA) (Continued)

TABLE XXXIV. 2-ARYLETHYLAMINES (ORT	HO, BETA)
-------------------------------------	-----------

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C₀H₁₃NO	C ₆ H ₃ CH(OH)CH ₂ NHCH ₃	BuLi/ether/25°/ 24 hr	(CH ₃) ₃ SiCl	α-[(Methylamino)methyl]-o-(trimethylsilyl)benzyl alcol.ol (21)	175
C10H11NS	(CH ₂) ₂ NH ₂	BuLi/THF/-78°/	D,0	2-d-Benzo[b]thiophene-3-ethylamine (83)"	153
	s s	0.5 hr			100
CioHisN	C ₆ H ₃ (CH ₂) ₂ N(CH ₃) ₂	BuLi BuLi/ether/25°/ 11 hr	(C ₆ H ₃) ₂ CO	[o-2-(Dimethylamino)ethyl]phenyl]- diphenylmethanol (7)	193 194, 195, 193
				CH(OH)CH ₂ N(CH ₃) ₂	
C10H15NO	C ₆ H ₃ CH(OH)CH ₂ N(CH ₃) ₂	BuLi/ether/25°/ 24 hr	CH ³ I	$X = CH_3 (47)$	175
		2	CH2O (CH3)3SiCI	$X = CH_2OH$ (33) $X = Si(CH_3)_3$ (61)	175 175
C11H17NO2	p-CH ₃ OC ₆ H ₄ CH(OH)CH ₂ N(CH ₃) ₂	" BuLi/ether/25°/ 24 hr	(C ₆ H ₅) ₂ CO (C ₆ H ₅) ₂ CO	$X = C(C_6H_3)_2OH (48)$ α^{1} -[(Dimethylamino)methyl]-4-methoxy- α^{2} , α^{2} -diphenyl-o-xylene- α^{1} , α^{2} -diol (48)	175 175
	(CH ₂) ₂ N(CH ₃) ₂				
C ₁₂ H ₁₅ NS	$\langle I_s \rangle$	BuLi/THF/-78°/ 0.5 hr	D ₂ O	N,N-Dimethyl-2-d-benzo[b]thiophene-3- ethylamine (83)	153
C12H19N	C ₆ H ₃ C(CH ₃) ₂ CH ₂ N(CH ₃) ₂	BuLi/ether/25°/ 120 hr	(C _e H _s) ₂ CO	[o-[2-(Dimethylamino)-1,1-dimethylethyl]phenyl]- diphenylmethanol (17)	195
C13H18N2	(CH ₂) ₂ N(CH ₃) ₂	BuLi/THF/0%	D ₂ O	3-[2-Dimethylamino)ethyl]-2-d-1-	153

* The isolated yield was 83%; the deuterium incorporation was 80%. * The isolated yield was 74%; the deuterium incorporation was 74%.

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
		CH(OLi)N(CH ₃) ₂			сно	1.17
	C7H10LiNO2	√ J	Et/Li/ether/ reflux/2 hr	(n-C_H_9O)_3B (H_3O*)	(32) B(OH) ₂	114, 11
	C7H10LiNOS	CH(OLi)N(CH ₃) ₂	BuLi/reflux/ 135 min	CO ₂	3-Formyl-2-thiophenecarboxylic acid (44)	414
5	C ₆ H ₁₂ LINOS	OLi C(CH ₃)N(CH ₃) ₂	BuLi	"S"+BrCH2CO2H3	Methyl [(3-acetyl-2-thienyl)thio]acetate ()	422
		S' OLI			COCH ₃	
	C10H13CILINO	p-CIC ₆ H ₄ C(CH ₃)N(CH ₃) ₂	BuLi/THF/0°- 25°/16 hr	CH³1	$CI \qquad X = CH_3 (81)$	196
			" " Bulli/THF/0°/ 8 br	(CH3S)2 DMF 1-C4H9NCO 0-CIC6H4CN	$X = SCH_{3} (45)$ X = CHO (56) $X = CONHC_{4}H_{9} - t (41)$ $X = CC_{9}H_{4}CI - o (53)$	196 196 196 196
			BuLi/THF/0° 25°/16 hr	(C ₆ H ₅) ₂ CO	$X = C(C_6H_3)_2OH$ (47)	196
	C ₁₀ H ₁₄ LiNO	C ₆ H ₅ C(CH ₃)N(CH ₃) ₂	BuLi/THF/0°- 25°/16 hr	(CH ₃ S) ₂	2'-(Methylthio)scetophenone (60)	196
	C II LINOS	CH(OLi)N(CH ₃) ₂	P1 (/PLIE/_ 20		2 Magnatohanzof / Ithiophana 3	454
	C ₁₁ H ₁₂ LINOS	Ś	to -20°	а	carboxaldehyde ()	4.54
	C11H13CILINO	OLi p-CIC ₆ H ₄ C(C ₂ H ₅)N(CH ₃) ₂	BuLi/THF/0°/ 20 hr	(CH ₃ S) ₂	4'-Chloro-2'-(methylthio)propiophenone (47)	196
	C ₁₁ H ₁₈ LiNO ₂ S	r-C ₄ H ₉ O S	BuLi/ether/ reflux/1 lu	DMF	4-1-Butoxy-2,3-thiophenedicarboxaldehyde (60)	148
	C11H18LiNO2Se	r-C ₄ H ₉ O Se	BuLi/ether/ reflux/1 hr	DMF	4-1-Butoxy-2,3-selenophenedicarboxaldehyde (50)	148
		OLi				al.
	C13H19CILINO	p-CIC ₆ H ₄ Ċ(C ₄ H ₉ -n)N(CH ₃) ₂ QLi	BuLi/THF/0°/ 16 hr	(CH ₃ S) ₂	4'-Chloro-2'-(methylthio)valerophenone (56)	196
	C ₁₅ H ₁₅ ClLiNO	p-CIC ₆ H ₄ C(C ₆ H ₅)N(CH ₃) ₂	BuLi/THF/0°-	(CH ₃ S) ₂	4-Chloro-2-(methylthio)benzophenone (53)	196
			2.3 / 10 m	DMF	4-Chloro-2-formylbenzophenone (55)	196

TABLE XXXV. a-Alkoxidoaralkylamines (Ortho, Beta)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C6H7NOS	CONHCH ₃	BuLi/ether/	D ₂ O	2-d-N-Methyl-3-thiophenecs	arboxamide (55)	134
	s	25°-35°/ 1 hr.		0		
	CON(CH ₃) ₂			s La		
C ₇ H _u NOS	$\langle \rangle$	BuLi/ether/ 25º/20 min	-			134,43
C _s H _s CINO	p-CIC ₆ H ₄ CONHCH ₃	BuLi/THF/ -30°-25°/ 2 hr	I2(CH3I)	CI CON(CH ₃) ₂	X=I (30)	23
			o-CIC,H,CHO (CH3I)		X = CH(OCH ₃)C ₆ H ₄ Cl-o	23
			o-FCeH₄CHO (CH₃I)		(90) X = CH(OCH ₃)C ₆ H ₄ F-0	23
		51	(C4H3S)2 (CH3I)	2.(2. Hudrowsthyl) 4. chloro	(90) X=SC ₆ H ₅ (62)	23
		5	oxide	methylbenzamide (58)		23
		č' - 1	o-FC ₆ H ₄ CN	3-Amino-5-chloro-3-(o-fluor methylphthalimidine (26)	ophenyl)-2-	23
				CONHCH	ОН	
C ₈ H ₉ NO	C.H.CONHCH,	BuLi/THF/0°/ 1 hr	Cyclohexanone	CL,	X = (40)	198
		BuLi/THF/ reflux/15 mi	C ₆ H ₅ CN		X=CC ₆ H ₅ (53)	54
		BuLi/THF/5°/ 1 hr	2,4-Cl₂C ₆ H₃CHO		X = CH(OH)C ₆ H ₃ Cl ₂ -2,4 ()	199
			p-CIC ₆ H_CHO		$X = CH(OH)C_6H_4Cl-p$ ()	199
		BuLi/THF/0°/ 1 hr	C₅H₃CHO		$X = CH(OH)C_6H_5 (28)^a$	198, 199
		BuLi/THF/5°/ 1 hr	m-CF₃C₀H₄CHO		$X = CH(OH)C_6H_4CF_3-m$	199
		H	₀-CH₃C₅H₄CHO		$X = CH(OH)C_6H_4CH_{3}-0$	199
		•••	p-CH ₃ C ₆ H ₄ CHO		$X = CH(OH)C_6H_4CH_3-p$	199
			p-CH₃OC₀H₄CHO		X = CH(OH)C6H4OCH3-F	199
		BuLi/THF/ reflux/15 min	C ₆ H ₅ COCH ₃		$X = C(CH_3)C_6H_3 (43)$ $ $ OH	54, 198. 487
		BuLi/THF/0°/ l hr	C ₆ H ₅ COC ₂ H ₃		$X = C(C_2H_5)C_6H_5 (70)$ $ $ OH	198
			L		он	
		BuLi/THF/5°/ 1 hr	N I	1.14	K= NCH ₂ C ₆ H ₅	488
			CH ₂ C ₆ H ₅		(-)	

TABLE XXXVI. ARYLCARBOXAMIDES (ORTHO, BETA)

1	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
	CsH⊋NO (Contd.)	C ₆ H ₃ CONHCH ₃	BuLi/THF/0°/ 1 hr	do	x = (47)	DH
			BuLi/THF/ reflux/ 15 min	p-ClC ₆ H ₄ COC ₆ H ₅	$X = C(C_6H_5)C_6H_1$ $ (51)$ OH	•Cl-p 54
				(C ₆ H ₅) ₂ CO	$X = C(C_6H_5)_2OH$	(81) 54, 198,
			BuLi/THF/5°/ 1 hr	p-CIC ₆ H ₄ COC ₆ H ₄ CH ₂ N(CH ₃) ₂ -4	$X = C(C_{g}H_{4}Cl-p)(C_{g}H_{4}Cl-p)(C_{g}H_{2}Cl-p)(C_{g}H$	C ₆ H₄- 490 CH₃)₂-0
			BuLi/THF/ reflux/ 15 min	Cyclohexanone (H ₃ O ⁺)	$\bigcup_{\mathbf{R}_1}^{\mathbf{O}} \mathbf{R}_2 = \bigcup$	(27) 54
			*	C ₆ H ₅ CHO (H ₅ O ⁺)	$ \begin{array}{c} \mathbf{R}_1 = \mathbf{H} \\ \mathbf{R}_2 = \mathbf{C}_6 \mathbf{H}_5 \end{array} $ (42)	1) 54
			-		R ₁ ,R ₂ =	(58) 54
			9	Cyclohexene oxide (H ₃ O*)	an an	54
			BuLi/THF/0°/ 0.5 hr BuLi/THF/ reflux/ 45 min	C ₆ H ₃ CN C ₆ H ₃ N(CH ₃)CHO	3-Amino-2-methyl-3-phenylphthalimidine (62) 3-Hydroxy-2-methylphthalimidine (53)	201, 54 491
			BoLi/THF/5°/ 1 br		$\bigcup_{i=1}^{\text{CONHCH}_3} (-), \qquad \bigcup_{i=1}^{O} (-), \qquad \bigcup$	(-) 492
			BuLi/THF/0°/ 0.5 hr	(C ₆ H ₅) ₂ SiCl ₂	(10) CONHCH ₃ Z Si(C ₄ H ₄) ₂	571
1	C ₉ H ₁₁ NO ₂	m-CH3OC6H4CONHCH3	BuLi/THF, ether/	Ethylene oxide	3,4-Dihydro-5-methoxyisocoumarin (67)	493, 189
			BuLi/THF,	(C ₆ H ₃) ₂ CO	4-Methoxy-3,3-diphenylphthalide (91)	493, 189,
		o-CH3OC6H4CONHCH3	BuLi/THF, ether/	Ethylene oxide	2-(2-Hydroxyethyl)-6-methoxy-N- methylbenzamide (50)	493,494
			reflux/1 hr			

TABLE XXXVI. ARYLCARBOXAMIDES (ORTHO, BETA) (Continued)

	Formula	Compound Lithisted	Conditions	Substrate	Product and Yield (%)	Refs.
				P	CH3O O	
	C _o H ₁₁ NO ₂	o-CH3OC6H4CONHCH3	BuLi/-70°-0°/	\square	(24)	200
	(Contd.)		1 hr	N I CH		
				, chij	ĊH3	
			BuLi/THF, ether/ reflux/1 hr	(C ₆ H ₅) ₂ CO	7-Methoxy-3,3-diphenylphthalide (60)	493, 189 19
250		p-CH ₃ OC ₆ H ₄ CONHCH ₃	BuLi/ether, TMEDA/ 35°/5 hr	D;0	2-a-N-Methyl-p-anisamide (50)	19
			BuLi/THF, ether/ reflux/1 hr	Ethylene oxide	3,4-Dihydro-6-methoxyisocoumarin (50)	493, 189
			BuLi/THF/	(C ₆ H ₅) ₂ CO	α -Hydroxy-4-methoxy-N-methyl- α , α -	
	C11H14CINO	m-CIC6H4CONHC4H9-1	65°/15 min BuLi/THF/ 70°/2 br	(CH ₃ S) ₂	diphenyl-o-toluamide (47) N-t-Butyl-3-chloro-2-(methylthio)benzami	19 de (31) 24
			-7073 m		CONHC4H9-1	
	C ₁₁ H ₁₅ NO	C ₆ H ₅ CONHC ₄ H ₀ -1	BuLi/THF/0°/ 1 hr	CO2	X=CO ₂ H	80) 24
				CH3I	X=CH ₃ (50	0) 24
				I-C_H9NCO	X = CONHC.	Ho-1 (75) 24
				C ₆ H ₃ CH ₂ Cl	$X = CH_2C_6H_2$ $X = SC_2H_2$	(28) 24 (62) 24
			٣	DMF	2-t-Butyl-3-hydroxyphthalimidine (86)	24
		C ₆ H ₅ CON(C ₂ H ₅) ₂	LTMP/THF/ 45 min	2	2-Benzoyl-N,N-diethylbenzamide (57)	55
		CONHCH,				
	C ₁₁ H ₁₅ NO ₄	CH ₃ O OCH ₃	BuLi/THF, ether/ reflux/1 hr	Propylene oxide	3,4-Dihydro-6,7,8-trimethoxy-3- methylisocoumarin (35)	202
	C11H20N2O		t-BuLi/THF/ -115°	CH₃OD	$\bigcup_{X}^{N} CON(C_2H_5)_2^{X=D} (100)$) 57a
				CH ₃ J	X=CH. (9	5) 579
				C ₂ H ₅ I	$\mathbf{X} = \mathbf{C}_2 \mathbf{H}_5 ($	60) 57a
			2	C6H3CO2CH3 p-CH3C6H4CO2CH3		(95) 57a CH ₃ -p (60) 57a
251		CONHCH,			0 YOYR	
	C12H11NO	(1)	BuLi/THF, ether/25°	Ethylene oxide (OH ⁻)	R=H (28)	495
			BuLi/THF, ether/ reflux/40 min	Propylene oxide	R=CH ₃ (4	8) 482
		CONHCH ₃	BuLi/THF	Ethviene		105
		\sim	ether/25°	oxide (OH ⁻)	R	433
			BuLi/THF, ether/ reflux/40 mir	Propylene oxide	$\mathbf{R} = \mathbf{C}\mathbf{H}_3 (28)$	3) 482

TABLE XXXVI. ARYLCARBOXAMIDES (ORTHO, BETA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C13H10CINO	₽-CIC&H₄CONHC&H₅	BuLi/THF/ - 10° - 0°/0.5 hr	CH,	a Control R	R=CH ₃ (25)	200
353			CH ₂ C ₆ H ₅		$\mathbf{R} = \mathbf{C}\mathbf{H}_{2}\mathbf{C}_{6}\mathbf{H}_{5} (17)$	200
C13H10FNO	p-FC ₆ H ₄ CONHC ₆ H ₃	BuLi/THF/ _70°- 0°/1 hr	CH ₃	F CH ₃	(45)	200
C ₁₃ H ₁₃ NO	C ₆ H ₅ CONHC ₆ H ₅	BuLi/THF/0°/ 1 hr "	Cyclohexanone C ₆ H ₅ COC ₂ H ₃	CONHC ₆ H ₅	$X = \bigcup_{\substack{i=0 \\ i \in C_2}}^{OH} (56)$ $X = C(C_2H_5)C_6H_5 (80)$ OH	198 198
		i.	do		X = (55)	198
			(C ₆ H ₅) ₂ CO		$X = C(C_6H_5)_2OH (75)$	198
		BuLi/THF/ 0°/0_5 hr	(CH ₃) ₂ SiCl ₂		$R = CH_3, m = n = 2$ (67)) 571
		- a ((CH ₃) ₃ SiCl	\ CONHC ₆ H ₅ / _m SiR	$R = CH_3, m = 1$ n = 3 (60)	571
253			(C ₆ H ₅) ₂ SiCl ₂	P	$R = C_6 H_s, m = n = 2$ (70)) 571
		BuLi/THF/ _70°-* 0°/1 hr 	CH ₃ C ₂ H ₃ CO(CH ₂) ₂ N(CH ₃) ₂		$R_{1i}R_{2} = \bigcup_{\substack{N \\ CH_{3}}} (50)$ $R_{1} = C_{2}H_{3}$ $R_{2} = (CH_{2})_{2}N(CH_{3})_{2} \left\{ (5) \right\}$	200 i5) 24
		e -	N(CH ₃) ₂		$R_1, R_2 = \bigcup_{(25)}^{N(CI)}$	1 ₃) ₂ 24

TABLE XXXVI. ARYLCARBOXAMIDES (ORTHO, BETA) (Continued)

Formula		Compound Lithiated	Conditions Substrate		Product and Yield (%)	
C, (C	35H11NO Contd.)	C&H3CONHC4H3		CH ₂ C ₆ H ₅	$\mathbf{R}_{1}\mathbf{R}_{2} = \left(\begin{array}{c} \\ \mathbf{N} \\ \mathbf{N} \\ \mathbf{CH}_{2}\mathbf{C}_{6}\mathbf{H}_{5} \end{array} \right) $ (42)	200
C,	14H33NO	C ₆ H ₅ CONHCH ₂ C ₆ H ₅	BuLi/THF/0°/ 0.5 hr BuLi/THF/0°/ 0.5 hr	C&H3CN C&H3NCO	3-Amino-2,3-diphenylphthalimidine (65) N-Benzyl-N'-phenylphthalamide (20)	201 496
c	14H13NO2	m-CH3OC4H4CONHC6H3	Bul i/THF/ - 10°- 0°/0.5 hr	CH,	CH ₃ O (19) CH ₃ O (19)	200
		₽-CH₃OC&H₄CONHC&H₅	BuLi/THF/ –10°– 0°/0.5 br	CH ₃	CH ₃ O (34)	200
C	14H31CIN2O	CI CONHC ₄ H ₉ -t	BuLi/THF/ -78°/1 hr	(CH ₃ S) ₂	N-1-Butyl-3-chloro-6-[(dimethylamino)methyl]- 2-(methylthio)benzamide (56)	24
c	516H24N2O2	CONHC4H9-n CONHC4H9-n	BuLi/THF, ether	Ethylene oxide	n-C ₄ H ₉ NHCO	51
		CONHC4H9-t CONHC4H9-t	BuLi/THF/0°/ 6 hr	(CH ₃ S) ₂	N,N'-Di-(-butyl-4-(methylthio)isophthalamide (51)	24

TABLE XXXVI. ARYLCARBOXAMIDES (ORTHO, BETA) (Continued)

* The product was contaminated with the corresponding phthalide. Note: References 360-607 are on pp. 355-360.

3

TABLE XXXVII. ARYLTHIOCARBOXAMIDES (ORTHO)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C _s H _s CINS	p-ClC ₆ H ₄ CSNHCH ₃	BuLi/THF/ -45°-10°	CH ₃ CHO (H ₃ O ⁺)	5-Chloro-3-methylphthalide (68)	65
			DMF	CI OH (77)	65
		÷	ı-C₄H ₉ NCO	$CSNHCH_3 = CONHC_4H_9-t (61)$	65
			(C.H.S)	$X = SC_{\epsilon}H_{\epsilon}$ (91)	65
C ₈ H ₉ NS	C ₆ H ₅ CSNHCH ₃	BuLi/THF/0°/ 4 hr	(CH ₃) ₃ SiCl	N-Methyl-o-(trimethylsilyl)thiobenzamide (49)	65
C ₉ H ₁₁ NOS	p-CH ₃ OC ₆ H ₄ CS- NHCH ₃	BuLi/THF/0°/ 25°/8.5 hr	(CH ₃ S) ₂	4-Methoxy-N-methyl-2- (methylthio)thiobenzamide (78)	65

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Ref
C₀H₁1NOS	CH ₃) ₂	BuLi/THF/ -70°/1 hr	C₅H₅CHO	$\begin{pmatrix} X \\ N \\ O \end{pmatrix} (CH_3)_2 , \qquad X \\ (36) \qquad (55) X = 0 \\ (36) \qquad (57) X = 0 \\ (36) \qquad (57) X = 0 \\ (36) \qquad (36) \qquad (36) \qquad (36) \qquad (36) \\ (36) \qquad (36) \qquad (36) \qquad (36) \qquad (36) \qquad (36) \\ (36) \qquad ($	(CH ₃) ₂ 139 CH(OH)C.H.
		BuLi/ether/ -70°-0°		(91) (4) X =	CH(OH)C ₆ H ₃ 139
C ₀ H ₁₁ NO ₂		BuLi/THF/ -70°/1 hr	С₅н₃сно	(CH ₃) ₂ (49), X	(CH ₃) ₂ (36) 377 CH(OH)C ₄ H ₄
C10H12N2O	N (CH ₃) ₂	CH3Li/THF/ -78°-0°/ 1 hr	D ₂ O	N = X = X	D (80) 207
	9–	 7 1 1 1 1 1 1 1 1 1 1 1	CH ₃ I C ₂ H ₃ I CH ₂ ==CHCH ₂ Br DMF C ₂ H ₅ COC ₂ H ₅ C ₆ H ₅ CHO	x = x = x = x = x = x =	$\begin{array}{c} \text{CH}_3 (63) \qquad 207 \\ \text{C}_2\text{H}_5 (56) \qquad 207 \\ \text{CH}_2\text{CH}{=}\text{CH}_2 (55) 207 \\ \text{CHO} (52) \qquad 207 \\ \text{C(C}_2\text{H}_5)_2\text{OH} (76) 207 \\ \text{CH(OH)C}_6\text{H}_5 (83) 207 \end{array}$
C11H11D2NO	D D D (CH ₃) ₂	BuLi/THF/ - 45°/6 hr	D ₂ O	4,4-Dimethyl-2-(phenyl-2,4-6-d ₃)-2-oxazolin	e (92) 204

TABLE XXXVIII. 2-ARYLOXAZOLINES AND 2-ARYLOXAZINES (ORTHO, BETA)

257

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C ₁₁ H ₁₂ CINO	CI CH ₃) ₂	BuLi/ether/ 0°/1 hr	1,	2-(4-Chloro-2-iodophenyl)-4,4-dimethyl-2-ox	azoline (66)	46
	0-		CH3I	2-(4-Chloro-o-tolyl)-4,4-dimethyl-2-oxazoline	(71)	46
C ₁₁ H ₁₂ DNO		BuLi/THF/ -45°/6 hr	DzO	4,4-Dimethyl-2-(phenyl-2,6-d ₂)-2-oxazoline	(90)	204
	D CCH ₃) ₂	BuLi/THF/ -45°/7.5 hr,	D₂O	4,4-Dimethyl-2-(phenyl-2,3,6-d ₃)-2-oxazoline	(88)	204
		BuLi/THF/ -45°/1.5 hr	D₂O	4,4-Dimethyl-2-(phenyl-2,4-d ₂)-2-oxazoline (90)	204
C ₁₁ H ₁₃ NO	(CH ₃) ₂	s-BuLi/ ether -70°-0°	D ₂ O	4,4-Dimethyl-2-(phenyl-2-d)-2-oxazoline (92	6	46
			ı-C₄H₀NCO	2-(2-t-Butylcarbamoylphenyl)-4,4- dimethyl-2-oxazoline (81)		46
C12H15NO2	p-CH ₃ OC ₆ H ₄ (CH ₃) ₂	BuLi/ether/	CH3NCS	$(CH_3)_2$	SNHCH, (77)	46
			DMF (C ₆ H ₅ S) ₂	H ₃ O × X X=C CH ₃	но (70) С ₆ н, (89)	46 46
C13H16CINO	P-CIC ₆ H ₄ (CH ₃) ₂	BuLi/ether/ 0º/1 hr	ℴℯ℻ℯKℴ	CI $CH(OH)C_6H_4F-o$ (80) (2	isomers)	23
C ₁₃ H ₁₇ NO ₃	CH ₃ O OCH ₃	BuLi/THF/ -45°/1.5 hr	D ₂ O	CH_3O O $(CH_3)_2$ $X=D$	(95)	204
		:	(CH ₃ S) ₂ N-Chloro- succinimide	X=SX X=C	CH3 (92) I (90)	204 204
C16H20N2O2		CH ₃) ₂ LDA/ benzene, TMEDA/ 25°/7 hr	Снл	$(CH_3)_2 \begin{pmatrix} N \\ -O \\ R \end{pmatrix} \begin{pmatrix} N \\ O \end{pmatrix} (CH_3)_2 R = C$	H3 (98)	208d
			CH2=CHCH2	Br R=CF	I2CH=CH2 (41)	208d

TABLE XXXVIII. 2-ARYLOXAZOLINES AND 2-ARYLOXAZINES (ORTHO, BETA) (Continued)

TABLE XXXIX. ARYLCARBIMINES (ORTHO, BETA)

TABLE XXXIX. ARYLCARBIMINES (ORTHO, BETA) (Continued)

F	formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%) 1-Phenylpyrazole-5-carboxylic acid (39), 1-(o-carboxyphenyl)pyrazole (10)	
c	C₀H ₈ N₂	N C ₆ H ₅	BuLi/ether/0°- 25°/2 hr	CO2		
		64	2 BuLi/ether/ 25°/7 hr		$O = \begin{cases} V_{N}^{N} & (8), & O = \begin{cases} V_{N}^{N} & (26) \\ V_{N} & (26) \\ V_{N} & (26) \end{cases}$	88
c	5 ₁₁ H ₁₂ N ₂	CH-	BuLi/THF/-70	°CO2	HO ₂ C (44)	155
c	2 ₁₁ H ₁₂ N ₂ O	N NOCH3 C ₆ H ₅	BuLi/THF/-70	° CO ₂	HO ₂ C (53)	155

TABLE XL. N-ARYLPYRAZOLES (ORTHO)

F	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
c	C₅H₃NS		BuLi/ether/ -70°/1 hr	CO2	3-Cyano-2-thiophenecarboxylic acid (68)	271, 39
			BuLi/ether/ 0.5 hr	DMF	2-Formyl-3-thiophenecarboxamide ()	396
¢	$C_{3}H_{3}NSe$ CN Se		BuLi/ether/ 0.5 hr	CO2	3-Cyano-2-selenophenecarboxylic acid ()	396
				DMF	2-Formyl-3-selenophenecarboxamide ()	396
c	C7H5CIN	m-ClC ₆ H₄CN	LTMP/THF/ -70°/1 hr	(CH ₃ S) ₂	3-Chloro-2-(methylthio)benzonitrile (30)	24
(C7H ₈ N₂	CN V CH ₃	LDA/THF/ -80°/0.5 hr	CH₃OD	CN (37)	218
		CN CH,	LDA/THF/ -80°/20 hr	CH₃OD	$ \begin{array}{c} $	218
		0.04	Ĥ	FSO ₂ OCH ₃	X=CH ₃ (77)	218
		CH ₃	LDA/THF/ -80°/1.5 hr	CH3OD	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	218
			21	FSO ₂ OCH ₃	$X = CH_3$ (72)	218

TABLE XLI.	ARYLNITRILES AND a,	β -UNSATURATED	NITRILES	ORTHO,	BETA	l
------------	---------------------	-----------------------	----------	--------	------	---

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C4H7BrO	Br OC ₂ H ₅	BuLi/ether/ -78° to -50°/5 hr	Cyclopentanone (H ₃ O ⁺)	α -Bromo- $\Delta^{1,\alpha}$ -cyclopentaneacetaldehyde (30)	174b
		10	I-C_H_CHO	(E)-2-Bromo-1-ethoxy-4,4-dimethyl-1- penten-3-ol (58)	174b
C₄H ₇ ClO	C OC.H.	BuLi/THF, hexane/	CO2	(E)-2-Chloro-3-ethoxyacrylic acid (100)	174a
	OCH.	-100°		OCH	
C1H2OS	⟨ _S ⟩ ^{−−−−} ,	BuLi/ether/ 25°-reflux, 2 hr	/ I2	$\int_{S} \int_{X} X = 1 (42)$	567, 401
		BuLi/ether/ reflux/ 0.5 br	CO2	$\mathbf{X} = \mathbf{CO}_2 \mathbf{H} (86)$	402
		BuLi	DMF	X = CHO (83)	165
		Bul i/ether/	DMA (CH-O)-SO-	$X = COCH_3$ (32) 3-Methoxy-2-methylthiophene (D.	165
		reflux/ 15 min	(0130)[00]	4-methoxy-2-methylthiophene (II) (I+II, 74) (I:II, 93:7)	
				осн,	
		BuLi/reflux/ 20 min	(n-C4H2O)3B (H2O2)	(s) (24)	289
C3H6OSe	· Se	BuLi	DMF	3-Methoxy-2-selenophenecarboxaldehyde (50)	165
	OCH		DMA	3-Methoxyselenophen-2-yl methyl ketone (40)	165
C ₂ H ₇ NO	CH ₃	BuLi/THF 75°/11	V CO2	HO_2C OCH_3 CH_3O CH_2O_2H (47) CH_3O CH_2CO_2H (47)	498
C ₆ H ₈ OS	CH, S OCH.	BuLi/ethe 25°/24 h	r/ CO ₂	2-Methoxy-5-methylthiophene-3-carboxylic acid (50)	231
C ₇ H ₇ FO	p-FC ₆ H ₄ OCH ₃	BuLi/THF 27°/5 hr	7/ CO ₂	5-Fluoro-o-anisic acid (32)	19
N C7H8O	C ₆ H ₅ OCH ₃	BuLi/ether	/ D ₂ O	X=D (30)	27
A		2 hr BuLi/THF	00.	× X	35
		24 hr Bul i/ether	CO-(CH-N-)	X-00 CH (4)	33
		reflux BuLi/ether	/ CF2=CCl2	$X = CF = CCl_2$ (41)	364
		12 hr BuLi/THF ether/	n-C12H25Br	$X = C_{12}H_{25}-n$ (54)	499
CRO		25°/6 hr		e trademi i serie i Vi ser	3
C B B C		25°/22 h		4-hydroxy-o-anisic acid (7),	233
C _B H ₇ F ₃ O	p-CH ₃ OC ₆ H ₄ CF ₃	BuLi/ether 35°/21 h	D ₂ O	$3-d-\alpha,\alpha,\alpha$ -Trifluoro-4-methoxytoluene (92)	19
			(C ₆ H ₅) ₂ CO	(6-Methoxy-α,α,α-trifluoro-m- tolyl)diphenylmethanol (90)	19

TABLE XLII. ALKYL VINYL ETHERS AND ALKYL ARYL ETHERS (ORTHO, BETA)

	C _s H _s O	C ₆ H ₅ Q			0	
			s-BuLi/THF/ 0°/2 hr	CH3I	(20) CH ₃	384
	C ₈ H ₈ O ₂	$\int_{-\infty}^{\infty}$	BuLi/ether/ 25°/1 hr	CO2	$ \begin{array}{c} $	483
		CH ₃	ii -	(C ₆ H ₅) ₂ CO	$X = C(C_6H_3)_2OH$ (50)	483
272	C _a H ₉ BrO	Br CH ₃ OCH ₃	C ₆ H ₃ Li/ ether/25°/ 18 hr, reflu 8 hr	Cyclopentanone x/	1-(3-Bromo-6-methoxy-p-tolyl)cyclopentanol (33)	221, 220
	C ₈ H ₁₀ O	C ₆ H ₅ OC ₂ H ₅	BuLi/THF/ 24 hr	CO2	o-Ethoxybenzoic acid (42)	35
			BuLi/ether/ reflux/ 27 hr	CO ₂ (CH ₂ N ₂)	Methyl o-ethoxybenzoate (63)	50
		m-CH3OC6H4CH3	BuLi/cyclo- hexane	CO2	$ \begin{array}{c} X \\ $	17
			BuLi/cyclo- hexane,	4	(III: IV, 13: 12) X = CO ₂ H	17
			TMEDA BuLi/ether/ reflux	CO ₂ (CH ₂ N ₂)	$(III+IV, 53)$ $(III:IV, 3:2)$ $X = CO_2CH_3$	50
		o-CH3OC6H4CH3	BuLi/cyclo- hexane/ reflux/10 h BuLi/cyclo- hexane,	CO ₂ r	2-Methoxy-m-toluic acid (V), 2-methoxyphenylacetic acid (VI) (V+VI, 57) (V:VI, 1:2) (V+VI, 72) (V:VI, 3:1)	62, 61 62
			TMEDA/ 25°/10 hr		6 Matheway mateluin soid (31)	61.348
		р-СН3ОС6Н4СН3	reflux/ 40 hr	0.	a-memoxy-m-tolule acid (31)	1.6.4
	C _s H ₁₀ OS	m-CH3OC6H4SCH3	BuLi/ether/ reflux/	CO ₂	6-(Methylthio)-o-anisic acid (46)	574
273		р-СН ₃ ОС ₆ Н ₄ SCH3	4 hr BuLi/ether/ reflux/ 4 hr	CO ₂	5-(Methylthio)-o-anisic acid (50)	574
		an and a second	2.510		OCH ₃	
	C ₈ H ₁₀ O ₂	C ₆ H ₄ (OCH ₃) ₂ -m	C ₆ H ₃ Li/ ether/ 2-3 days	Cl2	X = OCI (39)	314
					OCH3	
			C ₆ H ₅ Li/ ether/ 60 hr	Cu	$X = \begin{array}{c} \\ CH_3O \end{array} $ (4)	8) 219
			BuLi/ether/ 25°/70 hr	CuBr	$\mathbf{X} = \mathbf{C}\mathbf{u} (93)$	501

TABLE XLII. ALKYL VINYL ETHERS AND ALKYL ARYL ETHERS (ORTHO, BETA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C8H10O2 (Contd.)	C ₆ H ₄ (OCH ₃) ₂ -m	C _s H ₃ Li/ ether/ 2-3 days	Br ₂	OCH ₃	X = Br (18)	314
		BuLi/ether C ₆ H ₃ Li/ether/	AgBr l ₂		X = Ag (21) X = I (80)	304 314
		BuLi/ether/	(CH ₃) ₂ SnBr ₂		$X = Sn(CH_3)_2Br (87)$	480
		C ₆ H ₅ Li BuLi	B(OCH ₃) ₃ (CH ₃) ₃ SnCl BrAuP(C ₆ H ₅) ₃		$X = B(OH)_2$ (48) $X = Sn(CH_3)_3$ (80) $X = AuP(C_6H_5)_3$ (90)	502 306 307
		BuLi/ether/ reflux/2 hr C ₆ H ₅ Li/ether/	CO2 BrCN		$X = CO_2H$ (70) X = Br (46)	503 314
		2-3 days " C ₆ H ₅ Li/ether/ 25%60 hr	ICN CH ₃ I		X=I (46) X=CH ₃ (95)	314 504
		C ₆ H ₅ Li/ether/ 2-3 days	(SCN) ₂		X = CN (6), X = SCN (21)	314
		19 14 14 14	AcCl Ethylene oxide Br(CH ₂) ₂ Br ClCH ₂ OCH ₃		X = Ac (14) X = (CH ₂) ₂ OH (57) X = Br (71) X = CH ₂ OCH ₃ (62)	314 314 314, 219 314
		" C ₆ H ₅ Li/25"/	C ₂ H ₃ I (CH ₃ O) ₂ SO ₂		$X = C_2 H_5$ (6) $X = C H_3$ (74–76)	314 505
		3 days C ₆ H ₅ Li/ether 2-3 days	BrCH ₂ CH=CH ₂		$X = CH_2CH = CH_2$ (88)	314
			≜ _{сн₂а}		$X = CH_2$ (42), X = CH_2CH(OH)CH_2CI (18)	314
		BuLi/THF/ reflux/	<u>А</u> _{сн,}		X = CH ₂ CH(OH)CH ₃ (28)	506
		C _s H _s Li/ether/ 2-3 days	CH ₃ COCH ₃		$X = C(CH_3)_2 OH (61)$	314
		C ₆ H ₅ Li/ether/ 60 hr	∃Br(CH₂)₃Br		$X = \underbrace{(CH_2)_3}_{OCH_4} (42)$	219
		CsHsLi/ether/	CICH ₂ N(CH ₃) ₂		$X = CH_3N(CH_3)_2$ (33)	507
		25°/2 days C _s H ₅ Li/ether/	BrCH ₂ CH=CHCH ₃		X=CH ₂ CH=CHCH ₃ (75)	314
		2-3 days	(CH ₃) ₂ CHCHO		$X = CH(OH)CH(CH_3)_2$ (76)	314
		C _e H _s Li/ether/ 60 hr	<u></u> +CI(CH₂)₄CI		$X = \underbrace{(CH_{2})_{4}}_{OCH_{3}} (33)$	219
			≟Bτ(CH₂)₄Bτ		$X = \underbrace{(CH_3O)}_{(CH_2)_4} (63)$	219
			CI(CH ₂),CI		$X = (CH_2)_4 CI$ (45)	219

TABLE XLII. ALKYL VINYL ETHERS AND ALKYL ARYL ETHERS (ORTHO, BETA) (Continued)
	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
	C _n H ₁₀ O ₂ (Contd.)	$C_6H_4(OCH_3)_2-m$	C ₆ H ₅ Li/ether/ 2-3 days	(C ₂ H ₅ O) ₂ SO ₂	CCH ₃	$X = C_2 H_3$ (18)	314
				CH2=C(CH3)- COCH3	OCH ₃	$X = C(CH_3)C(CH_3) = CH_2 (35)$	314
				BrCH ₂ CH=C(CH ₃)	2	$X = CH_2CH = C(CH_3)_2 (98)$	314
			C ₆ H ₅ Li/ether/ 25°/2 days	CICH ₂ N		$X = CH_2 N $ (55)	507
276				CICH ₂ N		$\mathbf{X} = \mathbf{CH}_2 \mathbf{N} \qquad \mathbf{O} \qquad (55)$	507
			C ₆ H ₅ Li/ether/ 60 hr	¹ / ₂ Br(CH ₂) ₅ Br		$X = \underbrace{(CH_2)_5}_{OCH_1} (58)$	219
			C6HsLi/ether/	CICH ₂ N(C ₂ H ₅) ₂		$X = CH_2N(C_2H_5)_2$ (68)	507
			25°/2 days C ₆ H ₅ Li/ether/ 2-3 days	(CH ₃) ₂ C=CHCOCH	la.	$X = C(CH_3)CH = C(CH_3)_2 (59)$	314
				CH3COC4Hp-t		$\mathbf{X} = \mathbf{C}(\mathbf{CH}_3)\mathbf{C}_4\mathbf{H}_9 \cdot \mathbf{r} (28)$	314
			C ₆ H ₅ Li/ether/ 25°/2 days	CICH ₂ N		$X = CH_2 N $ (49)	507
			C _e H _s Li/ether/ 60 hr	ġΒr(CH₂)₀Br		$X = \underbrace{(CH_2)_6}_{OCH_3} (64)$	219
			Buli/ether/-5°	CH ₃ N ⁺ CH ₃		$X = \underbrace{\bigwedge_{N}^{CH_3}}_{CH_3} ("high")$	508
			C ₆ H₅Li/ether/ 2–3 days	С₅Н₅СН—СНСНО		X = CH(OH)CH—CHC ₆ H ₅ (75)	314
277			BuLi/THF/ - 20°/2 hr	n-C ₁₂ H ₂₅ Br	2.2	$X = (C_{12}H_{25}-n (70))$	499
			t-Buli	CO2	OCH ₃ X OCH, (VII),	CCH ₃	
			BuLi/ether/ reflux	CO ₂ (CH ₂ N ₃)	(VII+VIII, 60) (VII:VIII, (VII+VIII, 60-75) (VII:VI	19:1) $X = CO_2H'$ III, 24:1) $X = CO_2CH_3$	36 50
			C ₆ H ₃ Li/ether/ 2-3 days	(CN)2	CH ₃ O NH OCH ₃ /2	54)	314

117

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
					OCH3 OCH3	
	$C_8H_{10}O_2$ (Contd.)	C ₆ H ₄ (OCH ₃) ₂ -0	C ₆ H ₅ Li	B(OCH ₃) ₃	$X = B(OH)_2 (20)$	502
			BuLi/ether/ 25°/24 hr	Cyclohexanone	X = (60) OH	509
5				\bigcirc	$\mathbf{X} = \bigcup (70)$	509
70			BuLi/heptane, TMEDA/ 25°/20 hr	12	1,4-Diiodo-2,3-dimethoxybenzene (2)	510
		m-CH3OC6H4CH2OH	BuLi/bexane, TMEDA/ 60°/5 hr	CO ₂ (CH ₂ N ₂)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	(6) 245
	C ₈ H ₁₂ OS	C ₄ H ₉ −t	BuLi/ether/	CO2	$ \begin{array}{c} OC_4H_5-t \\ X = CO_2H (62) \end{array} $	423
			0.5 hr BuLi/ether/ reflux/ 2 hr	(CH ₃ O) ₂ SO ₂	X=CH ₃ (87)	141
			BuLi/ether/	CICO ₂ C ₂ H ₅ DMF	$X = CO_2C_2H_3$ (75) $X = CH(OLi)N(CH_3)_2$ (141) 148
			1 hr BuLi/ether/	Ac ₂ O (MgBr ₂)	$X = COCH_x$ (75)	141
			28	t-C4H9OCO2C6H3 (MgBr2)	$\mathbf{X} = \mathbf{OC}_{4}\mathbf{H}_{9}\mathbf{-}t (70)$	141
		OC4H9-1			OC ₄ H ₉ -t	
	C ₈ H ₁₂ OSe	se	BuLi/ether/ -30°-reflux/ 1 hr	DMF	CH(OLi)N(CH ₃) ₂ (-)	148
			-	 DMA	3-1-Butoxy-2-selenophenecarboxaldehyde (32) 3-1-Butoxyselenophen-2-yl methyl ketone (55)	466
370	C ₉ H ₁₀ O ₂	(CH ₃) ₂	Bul i/THF, ether/3°/ 45 min, 25°/3 hr	D₂O	3-d-1,2-(Propylidenedioxy)benzene (54)*	500
	C ₉ H ₁₁ ClO ₃	CH ₃ O CH ₃ O CH ₃ O	BuLi/THF/ -70°/3 min	CO₂	2-Chloro-3,5,6-trimethoxybenzoic acid (79), 3-chloro-2,5,6-trimethoxybenzoic acid (16)	222
		a	BuLi/THF/	Ac ₂ O	2-Chloro-3,5,6-trimethoxyacetophenone (68)	223
	C ₉ H ₁₁ NO ₂	m-CH3OC6H4CONHCH3	25°/10 min BuLi/THF, ether/reflux	Ethylene oxide	3,4-Dihydro-5-methoxyisocoumarin (67)	493, 189
			l hr BuLi/THF, ether/1 hr	(C ₆ H ₅) ₂ CO	4-Methoxy-3,3-diphenylphthalide (91)	493, 189, 19

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Ref
C ₉ H ₁₂ O	C ₆ H ₅ OCH(CH ₃) ₂	BuLi/THF/	CO2	o-Isopropoxybenzoic acid (25)	35
	₀-C₂H₃C6H₄OCH₃	24 nr BuLi/ether/ reflux/ 60 hr	CO2	3-Ethyl-o-anisic acid (32)	61
	3,5-(CH ₃) ₂ C ₆ H ₃ OCH ₃	Bul.i/cyclo- hexane/ reflux/ 10 hr	CO2	$\begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ HO_{2}CCH_{2} \\ CCH_{3} $	
		Bul i/ether	(C₅H₅)₂CO	(XI) CH_3 (IX+X+XI, 40) (IX:X:XI, 24:51:30) 2-Methoxy-4.6-dimethyl- α,α -	17 51:
C ₉ H ₁₂ O ₂	C ₄ H ₃ OCH ₂ CH ₂ OCH ₃	BuLi/ether/ 2 hr	D ₂ O	diphenylbenzyl alcohol (80) <i>a-d</i> -2-Methoxyethoxybenzene (52), phenol (12), phenyl vinyl ether (8)	2:
	m-CH₃OC₅H₄CH(OH)CH₃	BuLi/hexane, TMEDA/ 60°/5 hr*	CO ₂ (CH ₂ N ₂)	$(H_{3}O) = (H_{3}O) + (H_{3}O) $)CH ₃ (14) 245
	3,4-(CH3O)2C6H3CH3	BuLi/ether/ 0°/5 hr, 25° 5 hr	Br(CH ₂)10Br	$CH_{3}O \xrightarrow{OCH_{3}} (CH_{2})_{m} \xrightarrow{OCH_{3}} (CH_{3})_{m} = 10 (46)$ $CH_{3} \xrightarrow{CH_{3}} CH_{3}$	512
	3,5-(CH3O)2C6H3CH3	" BuLi/ether/ 0°/48 hr Bul i	I(CH ₂) ₁₂ I I ₂	m = 12 (46) 4-Iodo-3,5-dimethoxytoluene (65) 2.6-Dimethoxytoluene (55)	511 511
C ₉ H ₁₂ O ₃	1,2,3-C ₆ H ₃ (OCH ₃) ₃	BuLi/THF/ 25°/2 hr	D ₂ O	$\begin{array}{c} \text{OCH}_3\\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \end{array} X = D (94)$	224
		BuLi BuLi/THF/ 25°/2 hr	CO ₂ C ₂ H ₅ Br	$X = CO_2 H$ (40) $X = C_2 H_5$ (56)	514 224
			n-C ₁₂ H ₂₅ Br	$X = C_{12}H_{25}-n$ (55) OCH ₃	224
	1,3,5-C ₆ H ₃ (OCH ₃) ₃	BuLi/ether/ 25°/70 hr	CuBr	$CH_{3O} \longrightarrow OCH_{3} X = Cu (65)$	501
		BuLi/ether BuLi/ether/	AgBr (CH ₂)-SnBr ₂	$X = Ag (21)$ $X = Sn(CH_{-}) Br (95)$	304
		25°/70 hr		N=50(013)201 (75)	480

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.	8
	C ₉ H ₁₂ O ₃ (Contd.)	3,5-(CH3O)2C6H3CH2OH	BuLi/hexane, TMEDA/ 60°/5 hr*	CO ₂ (CH ₂ N ₂)	$CH_{3}O_{+}CH_{2}OH (22), CH_{3}O_{+}CH_{3}O_{+}CH_{3}O_{-}CH_{3$	245	
	C ₉ H ₁₃ NO	m-CH ₃ OC ₆ H ₄ N(CH ₃) ₂	BuLi/ether/	(C _s H _s) ₂ CO	[2-(Dimethylamino)-6-methoxyphenyl]diphenylmethanol (71)	19	
282		o-CH3OC6H4N(CH3)2	35°/12 hr BuLi/ether/ 35°/12 hr	(C ₆ H ₅)₂CO	[2-Methoxy-3-(dimethylamino)phenyl]diphenylmethanol (56)	19	
		p-CH3OC6H4N(CH3)3	BuLi/ether/ 35°/12 hr	D ₂ O	3-d-N,N-Dimethyl-p-anisidine (85)	19	
		and the second		(C ₆ H ₅) ₂ CO	[2-Methoxy-5-(dimethylamino)phenyl]diphenylmethanol (71)	19	
	CoHigOS	CH ₃ OC ₄ H ₉ •t	BuLi/ether/ reflux/ 0.5 hr	ℓ-C₄H₀OCO₂C₅H₅	2,3-Di-t-butoxy-4-methylthiophene (79)	147	
	C ₉ H ₁₈ OS	n-C5H11S	t-BuLi/THF -70°/1 hr	n-C4H9Br	$n-C_{s}H_{11}S \qquad \qquad X=n-C_{a}H_{b} (42)$	127	
		OC ₂ H ₃			X OC ₂ H ₅		
				n-C4H9I n-C6H13CHO C6H3CHO	$X = n - C_4 H_9$ (60) $X = CH(OH)C_8 H_{13} - n$ (82) $X = CH(OH)C_8 H_5$ (80)	127 127 127	
	C10H7Cl2NO2	CH ₃ O N C-H ₃ Cl ₂ -2,6	BuLi/THF/ -70°/0.5 hr	CO2	5-(2,6-Dichlorophenyl)-3-methoxy-4- iscuzzolecarboxylic acid (75)	232	
	C10H8CINO2	CH ₃ O NO C.H.CI-0	BuLi/THF/ -70°/0.5 hr	CO2	5-(o-Chlorophenyl)-3-methoxy-4-isoxazolecarboxylic acid (62)	232	
	C10H9NO2	СН30	Buli/THF/	Iz	4-Iodo-3-methoxy-5-phenylisoxazole (88)	232	
		NO C ₆ H ₅	"	COa	3-Methoxy-5-phenyl-4-isoxazolecarboxylic acid (99)	232	
283	C ₁₀ H ₁₁ NO	CH ₃ O	Bul i/ether/ reflux/ 13 hr	СНО	$\begin{array}{c} CH_{3}O \\ & \leftarrow \\ & \leftarrow \\ & CH_{3} \end{array} (XII), \begin{array}{c} CH_{3}O \\ & \leftarrow \\ & \leftarrow \\ & CH_{3} \end{array} (XIII), \begin{array}{c} CH_{3}O \\ & \leftarrow \\ & CH_{3} \end{array} (XIII) \end{array}$		
		0-			(XII+XIII+XIV, 74) (XII:XIII:XIV, 4:5:1)	84	
	C10H12O	$\langle 0 \rangle$	BuLi/hexane TMEDA/ 25%6 hr	, CO ₂	2,3,4,5-Tetrahydro-1-benzoxepin-9-carboxylic acid (73)	225	

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C10H12OS	C6H2S	t-BuLi/THF/ -70°/1 hr	D20	C.H.S	X=D (95)	127
	OC U			X OCH		
	OC ₂ H ₃	500	Ethylana ovida	002113	Y-/01 101 /60	174
			Propylene oxide		$X = CH_2/2CH (OH)CH_3 (55)$	127
			n-C ₄ H ₉ I		$X = n - C_4 H_{\phi} (55)$	127
			СН3СН=СНСНО		$X = CH(OH)CH = CHCH_3$ (78)	127
		÷.	Cyclopentanone		X= HO (78)	127
	0	1	C ₆ H₅CHO n-C ₆ H₁₃CHO		$X = CH(OH)C_6H_5$ (75) $X = CH(OH)C_6H_{13}-\pi$ (84)	127 127
	10					
C10H13NO	Ŷ	BuLi/ether/ 25°/1 hr	(C ₆ H ₃) ₂ CO	[α-(Dimethylamino)-5,6-meth o-tolyl]diphenylmethanol (ylenedioxy)- 60)	483
	CH ₂ N(CH ₃) ₂					
C10H14O	C ₆ H ₅ OC ₄ H ₉ -t	t-BuLi/cyclo- hexane/ reflux/	COx	o-1-Butoxybenzoic acid (82)		36
		BuLi/THF/	#	Salicylic acid (27)		35
C10H14OS	m-CH3OC6H4SC3H7-i	24 hr BuLi/ether/ reflux/	CO2	6-(lsopropylthio)-o-anisic acid	(43)	574
	o-CH3OC6H4SC3H7-i p-i-C3H7OC6H4SCH3	BuLi/ether/ reflux/ 4 hr BuLi/ether/ reflux/ 4 hr BuLi/CHE	CO ₂ CO ₂	3-(Isopropylthio)-o-anisic acid 2-Isopropoxy-S-(methylthio)be	(45) inzoic acid (38)	574 574 306
C10H14O2	C ₆ H ₄ (OC ₂ H ₃) ₂ -m m-CH ₃ OC ₆ H ₄ C(CH ₃) ₂ OH	BuLi/hexane, TMEDA/ -60°/5 hr	CO ₂ (CH ₂ N ₂)	7-Methoxy-3,3-dimethylphthal	ide (46)	245
C.H.O.	3.5-(CH-O)-C-H-CH-	BuLi/hexane	CO ₄ (CH ₂ N ₂)	CH ₃ O (8),	CH ₃ O CH(OH)CH ₃ (24)	245
	(OH)CH3	TMEDA/ 60°/5 hr		CH ₃ O O	CH ₃ O ₂ C OCH ₃	
	CH ₃ O					
	CH ₃ O OCH ₃			A. S. S. and the second state of the State of the	11-114	
C10H14O4	\bigvee	BuLi/THF/ 25°	CO2	1,2,3,6-Tetramethoxybenzoic a	ucid (61)	514
	OCH ₃					
	CH-O			CHO		
	L OCH,			J OCH		
	CH ₃ O	BuLi/THF/25°/ 10 min	CO ²	СН ₃ 0 Х	V) $X = CO_2 H$ (78)	223, 222, 514
	OCH3			OCH ₃		
		BuLi/THF, ether/	СНЛ		$X = CH_3$ (75)	513
		25°/0.5 hr BuLi/THF/ 25°/10 min	DMF		X=CHO (62)	223

TABLE XLII. ALKYL VINYL ETHERS AND ALKYL ARYL ETHERS (ORTHO, BETA) (Continued)

Tommes	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
	CH ₃ O				
C10H14O4 (Contd.)	сн,о Осн,	BuLi/THF/ 25°/40 min	CICH ₂ N(CH ₃) ₂	$X = CH_2 N (CH_3)_2 (55)$	507
		BuLi/THF/ 25°/10 min	Ac ₂ O	X = Ac (64)	223
		BuLi/THF/ 25°/40 min		$\mathbf{X} = \mathbf{C}\mathbf{H}_2\mathbf{N} \mathbf{O} (64)$	4) 507
		BuLi/THF/ 25°/10 min	C ₆ H ₅ COCI	$X = COC_{e}H_{s}$ (88)	223
		BuLi/THF, ether/ 25°/0.5 hr	1,	XV, Y OCH ₃ CH ₃ O OCH ₃	
				(70) $X = I$ (9) $X = Y = I$	513
		4 BuLi/THF, ether/25°/ 15 min	12, CH3I	(→) (39) X=I Y=CH ₃	513
		5 BuLi/ether/ reflux/ 38 hr	CO2	() (35) X=Y=CO ₂ H	222, 51
	осн,	2 BuLi/THF/ 25°	(CH ₃ O) ₂ SO ₂	(→) (86) X = Y = CH ₃	514
C10H14O5	CH ₃ O CH ₃ O OCH	BuLi/THF/ 25°/10 min	Ac ₂ O	2-Hydroxy-3,4,5,6-tetramethoxyacetophenone (85)	223
C10H15NO	m-CH3OC6H4CH2N(CH3)2	BuLi/ether	Ethylene oxide	[2-(Dimethylamino)methyl]-6-methoxyphenethyl alcohol	() 189
		BuLi/ether/	(C ₆ H ₅) ₂ CO	α -(Dimethylamino)-6-methoxy-o-tolyl]diphenylmethanol	(79) 19,45
	p-CH3OC4H4CH2N(CH3)2	BuLi/ether/ 27°/2 hr	(C _s H _s) ₂ CO	$[\alpha$ -(Dimethylamino)-2-methoxy-m-tolyl]diphenylmethanol $[\alpha$ -(Dimethylamino)-3-methoxy-o-tolyl]diphenylmethanol	(58), 19 (<5)
				∽ CH ₂ N(CH ₄) ₂ ∽ CH ₂ N	(CH.).
	p-CH3OC6H4CH2N(CH3)3	BuLi/ether, TMEDA 15 hr	D ₂ O	CH40 CH40 X	(013)2
				(18) (48) X = D	19
		BuLi/ether, TMEDA/	(C ₆ H ₅) ₂ CO	(7) (55) $X = C(C_6H_5)_2OH$	19, 18
		2 hr			
	осн,	2 hr		OCH, X OCH,	

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
	OCH ₃				
C ₁₁ H ₁₀ O (Contd.)	\square	BuLi/hexane, TMEDA/ 25°/2 hr	CO ₂ (CH ₂ N ₂)	(XVI+XVII, 60) (XVI:XVII, 99:0.3) X = CO ₂ CH ₃	192
		1-BuLi/cyclo-	'n.	(XVI+XVII, 35) (XVI:XVII, 1:99)	192
		BuLi/ether/ reflux/ 18 hr	C₅H₃N(CH₃)CHO	(37) (9) X = CHO	229, 515
		BuLi/THF/25°/ 2.5 hr	C ₆ H ₅ CN	N NH (35) X=H	516
				$\mathbf{y}_{\mathbf{x}}$	
		.en	p-CIC6H,CN	(31) X=CI X	516
	CCCH,	BuLi/ether	CO2	(XVIII), (XVIII),	(XIX)
				(XVIII+XIX, 70) (XVIII:XIX, 7:43) $X = CO_2H$	17
		BuLi/ether/ reflux/18 br	C ₆ H ₅ N(CH ₃)CHO	(7) (65) X=CHO	229, 515
		BuLi/ether " BuLi/THF/ 25°/2.5 hr	Ethylene oxide BrCH ₂ CH=CH ₂ C ₆ H ₅ CN		230 230 516
				NH	
C ₁₁ H ₁₁ NO	OC ₂ H ₅	BuLi/ether/ 0°/1 hr	Ethylene oxide, HBr	(1) (4)	559
	OCH ₃			C ₆ H ₅	
CuHuNO	· CLN OCH,	BuLi	C ₆ H ₃ CN (H ₃ O*)	C_6H_5	478
		BuLi/ether/ 0°/45 min	C6H2N(CH3)CHO	OCH ₃ 2,4-Dimethoxy-3-quinolinecarboxaldehyde (68)	517, 515
	C ₆ H ₅	BuLi/THF/	CO2	5-Ethoxy-3-phenyl-4-isoxazolecarboxylic acid (81)	232
C ₁₁ H ₁₄ O	(CH ₃) ₂	BuLi/ether/	O2	2,2-Dimethyl-9-chromanol (18)	518
	~ ~	1enux/30 m	CO2	2,2-Dimethyl-9-chromancarboxylic acid (30)	518
	CH3 CH3	BuLi/hexane, TMEDA/ 25°/6 hr	CO2	2,3,4,5-Tetrahydro-7-methyl-1- benzoxepin-9-carboxylic acid (59)	225

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
	осн3			CH ₃ O	
$C_{11}H_{14}O_2$	Он	BuLi/hexane, TMEDA/ 60°/5 hr	CO ₂ (CH ₂ N ₃)	(80)	245
C11H16O	C ₂ H ₃ OCH(C ₂ H ₃) ₂ OCH ₃	BuLi/THF/ 24 hr	CO2	o-(1-Ethylpropoxy)benzoic acid (17)	35
	C4H9-t	t-BuLi/ cyclo- hexane	CO ₂	4-t-Butyl-o-anisic acid (XX), 6-t-butyl-o-anisic acid (XXI) (XX+XXI, 73) (XX:XXI, 91:9)	17
C11H16O	a-1-C4H9C6H4OCH3	BuLi/ether, TMEDA/ reflux/1 hr	(CH ₃) ₃ SiCl	(3-t-Butyl-2-methoxyphenyl) trimethylsilane (29)	519
			(C ₆ H ₅) ₂ CO	3-t-Butyl-2-methoxy-a,a-diphenylbenzyl alcohol (25)	519
C ₁₁ H ₁₆ O ₂	3,5-(CH ₃ O) ₂ C ₆ H ₃ C ₃ H ₇ -#	C ₆ H ₅ Li/ether/ reflux/ 20 hr	со,	2,6-Dimethoxy-4-propylbenzoic acid (48)	520
C ₁₁ H ₁₆ O ₃	C ₂ H ₅	BuLi/THF/ 25°/2 hr	C₂H₅Br	1,5-Diethyl-2,3,4-trimethoxybenzene (13)	224
C11H17NO	p-CH ₃ OC ₆ H ₄ (CH ₂) ₂ N(CH ₃) ₂	BulLi/ether/ 27°/28 hr	D2O	3-d-4-Methoxy-N,N-dimethylphenethylamine (72)	19
		BuLi/ether/ 27°/32 lur	(C ₆ H ₅) ₂ CO	[2-Methoxy-5-(dimethylamino)ethylphenyl]- α,α-diphenylbenzyl alcohol (60)	19
C11H17NO2	3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₃ - N(CH ₃) ₂	Buli/ether/ 0°/3 hr	I2	$CH_{3}O \xrightarrow{CH_{2}N(CH_{3})_{2}}{X=1} (77)$	23
			Ethylene oxide CH ₃ CHO CH ₃ OCH ₂ Cl	$X = (CH_2)_2OH$ (60) $X = CH(OH)CH_3$ (65) $X = CH_2OCH_3$ (66)	23 23 23
C12H12O2	CH30 OCH3	BuLi/ether/ reflux/ 9 hr	CO2	$CH_3O \rightarrow OCH_3 \qquad X = CO_2H (72)$	521
	6 .11	2	(CH3O)2SO2 C6H3N(CH3)CHO	X=CH ₃ (75) X=CHO (84)	521 521
C12H13NO2	No OCH(CH ₃)	BuLi/THF/) ₂ —70°/0.5 hr	CO2	5-Isopropoxy-3-phenyl-4-isoxazolecarboxylic acid (77)	232
C12H13NO3	CH ₃ O	BuLi/ether/ CH3 0°/3 hr, 25°/ "overnight"	Ethylene oxide	2,4,6-Trimethoxy-3-quinolinethanol (26)	559
		BuLi/ether/ 0°/1.5 hr	C ₆ H ₅ N(CH ₃)CHO	2,4,6-Trimethoxy-3-quinoline-carboxaldehyde (58)	517

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C12H13NO3 (Contd.)	сн,о осн,	BuLi/ether/ DCH ₃ 0°/1.5 hr	C ₆ H ₃ N(CH ₃)CHO	2,4,7-Trimethoxy-3-quinolinecarboxaldehyde (53)	517
	СН,0	BuLi/ether/ 0°/3 hr, 25°/ "overnight"	Ethylene oxide	2,4,8-Trimethoxy-3-quinolinethanol (14)	517
		BuLi/ether/ 0°/20 min	C ₆ H₅N(CH ₃)CHO	2,4,8-Trimethoxy-3-quinolinecarboxaldehyde (40)	559
C ₁₂ H ₁₄ O ₂	J.	BuLi/THF, ether/3°/ 45 min, 25°/3 hr	D ₂ O	$ \begin{array}{c} $	500
		BuLi/THF, ether/0°/ 5 hr, 25°/	$\frac{1}{2}Br(CH_2)_{10}Br$	$X = (CH_2)_{10} \bigcirc O$	(76) 512
		5 hr BuLi/THF, ether/0°/ 1 hr, 25°/ 2.5 hr	n-C ₁₂ H ₂₅ Br	$X = C_{12}H_{25}-\pi$ (71)	499
		BuLi/THF, ether/ 0°-25°/7 hr	Br(CH ₃) ₁₁ OTHP	$\mathbf{X} = (\mathbf{CH}_2)_{11}\mathbf{OTHP} (84)$	500
	OCH ₃			CH ₃ O OCH ₃ CH ₃ O ₂ C	
$C_{12}H_{16}O_{2}$	Он Сн,	BuLi/hexane, TMEDA/ 60%/5 hr	CO ₂ (CH ₂ N ₃)	CH ₃ (42), CH ₃ (42), CH ₃ (2)	245 (3)
	CH ₃ CH ₃ OCH ₃	BuLi/hexane, TMEDA/25°/ 6 hr	CO2	2.3.4.5-Tetrahydro-5-methoxy-7-methyl- 1-benzoxepin-9-carboxylic acid (65)	225
C12H16O3	OTHP OCH3	BuLi/ether/ 25°/22 hr	CO ₂ (H ₃ O*)	6-Hydroxy-o-anisic acid (26)	233
C ₁₂ H ₁₈ O	CH ₃ C ₄ H ₉ -1	BuLi/cyclo- hexane/ reflux/ 10 hr	CO ₂	$CH_{3} \qquad OCH_{3} \qquad CH_{3} \qquad CO_{2}H \\ C_{4}H_{9}-t \qquad C_{4}H_{9}-t \qquad C_{4}H_{9}-t \qquad (XXII) \qquad (12) \qquad (XXIII) \qquad (24)$	17
				HO ₂ CCH ₂ CO ₂ H	6

C4H9-t

(XXIV) (63)

TABLE XLII.	ALKYL VINYL ETHERS AND ALKYL ARYL ETH	IERS (ORTHO, BETA) (Continued
-------------	---------------------------------------	-------------------------------

TABLE XLII. ALKYL VINYL ETHERS AND ALKYL ARYL ETHERS (ORTHO, BETA) (Continued)

" The isolated yield was 54%; the deuterium incorporation was 30%.

* The isolated yield was 92%; the deuterium incorporation was 97%.

101	mula	Compound Lithiated	Conditions	Substrate	Froduct and Treid (76)	RCIS.
C ₈ I	H ₉ ClO ₂	o-CIC ₆ H₄OCH₂OCH₃	BuLi/hexane, TMEDA/0°/ 0.5 hr	DMF	3-Chloro-2-(methoxymethoxy)- benzaldehyde (85)	234
C,I	H ₁₁ BrO ₂	Br CH ₃	C ₆ H ₅ Li/ether, pet. ether/ 25°/24 hr	CO ₂ (CH ₂ N ₂)	Methyl 5-bromo-2-(methoxymethoxy)- p-toluate (I), methyl 3-bromo- 6-(methoxymethoxy)- o-toluate (II) (I+II, 93) (I:II, 92:8)	526
C ₉ J	H ₁₂ O ₂	m-CH ₃ C ₆ H ₄ OCH ₂ OCH ₃	t-BuLi/pet. ether/0°/ 2 hr	CO ₂ (CH ₂ N ₂)	Methyl 2-(methoxymethoxy)-p- toluate (90)	526
		₀-CH₃C₀H₄OCH₂OCH₃	BuLi/hexane, TMEDA/0°/ 0.5 hr	DMF	2-(Methoxymethoxy)-m-tolualdehyde (80)	234
		p-CH ₃ C ₆ H ₄ OCH ₂ OCH ₃	BuLi/hexane, TMEDA/0°/ 0.5 hr	DMF	6-(Methoxymethoxy)-m-tolualdehyde (81)	234
		C ₆ H ₅ O(CH ₂) ₂ OCH ₃	BuLi/ether/ 2 hr	D ₂ O	2-d-(2-Methoxyethoxy)benzene (52) phenol (12), phenoxyethylene (8)	27
C ₁₀	H14O4	OCH ₂ OCH ₃ OCH ₂ OCH ₃	BuLi/ether/ 25°/24 hr	Ethylene oxide	2,3-Bis(methoxymethoxy)phenethyl alcohol (72)	527
		OCH2OCH3 OCH2OCH3	BuLi/ether/ 25°/24 hr	Ethylene oxide	2,5-Bis(methoxymethoxy)phenethyl alcohol (92)	527
Cıı	H ₁₄ O ₂	Ũ	BuLi	$\rm CO_2(H_3O^+)$	Salicylic acid (52)	528
				Ethylene oxide (H ₃ O ⁺)	o-Hydroxyphenethyl alcohol (70)	235
C ₁₂	H ₁₆ O ₃	OCH ₃	BuLi/ether/ 25°/22 hr	CO ₂ (H ₃ O ⁺)	6-Hydroxy-o-anisic acid (26)	233
Cie	H ₁₈ O₄	OCH2OCH3	BuLi/ether/	Ethylene oxide	$X = (CH_2) OH (28)$	527
		OCH2OCH3	25°/5 min		OCH2OCH3	C.S.C.

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C16H22O4	OTHP	BuLi	$CO_2(H_3O^*)$	2,6-Dihydroxybenzoic acid (60)	528
		BuLi/ether/ reflux/20 hr	CO ₂ (H ₃ O ⁺)	2,3-Dihydroxybenzoic acid (48)	528
	OTHP	BuLi	CO ₂ (H ₃ O ⁺)	2,5-Dihydroxybenzoic acid (65)	528, 235
C ₁₈ H ₂₆ O ₆	CH ₃ O THPO OCH ₃	BuLi/THF/ 25°/45 min	CO₂ (H₃O*)	2,5-Dihydroxy-3,6-dimethoxybenzoic acid (86)	223, 222
		BuLi/THF/ 25°	DMF	$\begin{array}{c} CH_{3}O \\ THPO \\ X \\ \end{array} \qquad \qquad$	223
		BuLi/THF/ 25°/45 min	Ac ₂ O	$X = COCH_3 (82)$	223

TABLE XLIII. ALKOXYALKYL ARYL ETHERS (ORTHO) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C ₁₂ H ₈ O	\mathcal{O}	BuLi/ether	Br ₂	aR	X=Br (17)	249
			02	• •	X=OH (45)	288
		BuLi/THF, ether/ -55°-0°/1 hr	CO2		X=CO ₂ H (86)	529, 560
		BuLi/ether/25°/ 38 hr	CH ₃ ONH ₂		$X = NH_2$ (79)	286
		-	(CH ₃) ₂ N	10,	$X = CH = CHNO_2$ (56)	285
		BuLi/ether/ reflux/17 hr	(C ₆ H ₅) ₃ SiCl		$X = Si(C_6H_5)_3$ (63)	452
C12H8OS		BuLi/ether/ reflux/24 hr	0 ₂		X=OH	288
		BuLi	CO2	(37)	X=CO ₂ H	237
		BuLi/ether/reflux		(35),	CO ₂ H (1-9)	236, 237

TABLE XLIV. DIARYL ETHERS AND CONDENSED DIARYL ETHERS (ORTHO)

303

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
	C ₁₂ H ₉ CiO	₽-ClC ₆ H₄OC ₆ H₅	C ₆ H ₅ Li/ether/ 20°/26 hr*	(C ₆ H ₅) ₂ SiCl ₂		m = n = 2 (7)	243
				(C ₆ H ₅)₃SiCl			243
304	C₁₂H ₉ NO		BuLi/ether/25°/ 110 hr	CO2			238
	C12H10O	(C ₆ H ₅) ₂ O	BuLi/THF/25°/ 2 hr	Ethylene oxide	CCC ₆ H ₅	X=(CH ₂) ₂ OH (93)	23
			BuLi/ether/reflux/ 24 hr	(C ₆ H ₅) ₃ SiCl		$X = Si(C_6H_5)_3$ (67)	243
			BuLi/ether/reflux/ 72 hr "	CO2 (CH3)3SiCl		$X = CO_2H$ (23) $X = Si(CH_3)_3$ (60)	239 242
			BuLi/THF, ether/ reflux/5 hr	(CH ₃) ₂ SiCl ₂		R=R'=CH ₃ (32)	240, 239
			" BuLi/ether/reflux/ 72 hr "	$C_6H_5SiH_3$ $(C_6H_5)_2SiH_2$ $(C_6H_5)_2SiCl_2$ $(C_1H_2CH_3)_2SiCl_2$		$ \begin{array}{c} R = H \\ R' = C_6 H_5 \end{array} (26) \\ R = R' = C_6 H_5 (20) \\ R = R' = C_6 H_5 (34) \\ \end{array} $ $ \begin{array}{c} R = R' = C + C_6 H_6 (52) \\ \end{array} $	241 241 239 242
				(n-C ₁₂ H ₂₅) ₂ SiCl ₂		$\mathbf{R} = \mathbf{R}' = n - C_{12} \mathbf{H}_{25} (17)$	242
305				SiCl ₄			239
			BuLi/ether/reflux/ 24 hr	C ₆ H ₅ SiCl ₃			
					ν ν _m οικ _n	$ \begin{array}{c} m = 3 \\ n = 1 \\ R = C_6 H_5 \end{array} \right\} (14)$	243
			-	$(C_6H_5)_2SiCl_2$ $(n-C_1-H_{12})_2SiCl_2$		$ \begin{array}{l} m = n = 2 \\ \mathbf{R} = \mathbf{C}_6 \mathbf{H}_5 \end{array} $ (40) $ m = n = 2 \end{array} $	243
				12. 25/201012		$R = n - C_{12} H_{25}$ (53)	242

TABLE XLIV.	DIARYL ETHERS AND CONDENSED DIARYL ETHERS (ORTHO) (Continued)	

TABLE XLIV. DIARYL ETHERS AND CONDENSED DIARYL ETHERS (ORTHO) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
C14H12O	(2)	BuLi/THF/25°/ 7 hr	CH₂O	$X = CH_2OH$ (56)	23
		0	Ethylene oxide	$X = (CH_2)_2OH (52)$	23
		BuLi/ether/reflux/ 68 hr	CO ₂ (CH ₂ N ₂)	$(10) X = CO_2CH_3 (30)$	530
	Calle	÷	CH ₂ O	X X X=CH ₂ OH (55)	530
C ₁₄ H ₁₃ NO		BuLi/reflux/42 hr	CO ₂		238
C14H14O2	C ₆ H ₅ O(CH ₂) ₂ OC ₆ H ₅	BuLi/ether/25°/ 1.5 hr	CO2	$C_6H_5O(CH_2)_2O$ X = CO_2H (14)	243
		•	(C ₆ H ₅) ₃ SiCl	$X = Si(C_6H_5)_3$ (7)	243
C ₁₅ H ₁₈ OSi	p-(CH ₃) ₃ SiC ₆ H ₄ OC ₆ H ₅	BuLi/THF, ether/ 15 hr	(C ₆ H ₅) ₂ SiCl ₂	$\bigcup_{\substack{Si\\(C_6H_5)_2}}^{O} \bigcup_{Si(CH_3)_3} (17)$	241
C ₁₈ H ₁₃ NO		BuLi/ether/reflux/ 23 hr	CO2	(4)	238
C ₂₀ H ₁₄ O	OC ₆ H ₅	C ₆ H ₅ Li/ether/ 25°/6 days	CO ₂	$ \begin{array}{c} $	531
			CH ₃ I (C ₆ H ₅) ₂ CO	$X = CH_3 (15)$ $X = C(C_1H_2) OH (5)$	J31

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
		CH2OCH3			CH2OCH3	
	C ₆ H ₆ OS	\sqrt{s}	BuLi/ether/25°/	CO ₂	$\sqrt{\sum_{S}} X = CO_2 H (89)$	142
			BuLi/ether/25°- 35°/1-1.5 hr	(CH ₃ S) ₂	X=SCH ₃ (61)	134, 43
			BuLi BuLi/ether/25°- 35°/1-1.5 hr	DMF (C ₆ H ₅) ₂ CO	X = CHO (72) $X = C(C_0H_3)_2OH$ (46)	43, 134 134
		CH2OCH3			CH3 CH2OCH3 CH2OC	H ₃
308	C ₆ H ₉ NO ₂	CH, O.N	BuLi/THF/-60°/ 1 hr	Сн₃ї	CH ₃ O ^N (I), C ₂ H ₅ O ^N (II)	186
					(I+II, 90) (I:II, 1:4)	¢
	C₂H₀O	C₅H₃CH₂OH	BuLi/pet. ether, TMEDA/ reflux/11 hr	la -	X = I (58)	244b
				CH ₂ O	$\mathbf{X} = \mathbf{CH}_2\mathbf{OH} (70)$	2445
			*	CH ₃ I n-C ₄ H ₆ Br	$X = CH_3$ (30) $X = C_4H_0 - n$ (21)	244b 244b
			24	n-C.H.Cl	$\mathbf{X} = \mathbf{C}_{\mathbf{a}}\mathbf{H}_{0} \cdot \mathbf{n} (55)$	244b
			- 0. 1.	Cuclobevapore		244b
				Cyclonexation	\bigcirc	
				C ₆ H ₅ CHO	$X = CH(OH)C_6H_5 (95)$	2446
		0 -7	 	r-C ₄ H ₉	$X = \underbrace{OH}_{C_4H_9-t}$ Phthalide (50)	244b 244b
	CHOS	- to	Bul i/ether/	"S"+CICH-CO-CH-	X=S (94)	143
	C7H8023	S	reflux/20 min	(NaOEt)	S X CO ₂ H	
			BuLi/ether/25°-	"Se"+CICH2CO2CH3	X = Se (48)	245
			BuLi/ether/	(NaOEt) $CO_2 (H_3O^*)$	3-Formyl-2-thiophenecarboxylic acid (78)	412
			reflux/15 min BuLi/ether/-70°	C ₆ H ₅ CN (H ₃ O ⁺)	2-Benzoyl-3-thiophenecarboxaldehyde (16)	413
309		LJ.				
	C ₇ H ₈ O ₂ Se	Se OF	BuLi/ether/ reflux/0.5 hr	"Se" + ClCH ₂ CO ₂ CH ₃ (H ₃ O ⁺ , NaOC ₂ H ₃)	Selenolo[2,3-b]selenophene-2- carboxylic acid (45)	575
		25			сно	
	C ₇ H ₈ O ₃		BuLi/ether/-10°-	CO ₂ (H ₃ O ⁺)	$X = CO_2 H$ (50)	376
			15	C ₂ H ₅ CON(CH ₃) ₂ (H ₃ O ⁺)	$\mathbf{X} = \mathbf{COC}_2 \mathbf{H}_5 (40)$	376
			BuLi/ether/0°/ 0.5 hr	$\bigcup_{\substack{O \\ (H_3O^+)}} CON(CH_3)_2$	$X = \bigcup_{O} (41)$	113

TABLE XLV. ALKYL ARALKYL ETHERS AND ARALKYL ALCOHOLS (ORTHO, BETA)

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
	C ₇ H ₈ O ₃ (Contd.)	C C C C		(H ₃ O ⁺)	$\int_{0}^{CHO} x = co \int_{S}^{(30)}$	113
			BuLi/ether/0°/ 0.5 hr	C₅H₅CON(CH₃)₂ (H₃O⁺)	$\mathbf{X} = \mathbf{COC}_{\mathbf{s}}\mathbf{H}_{\mathbf{s}} (61)$	113
310	C _s H ₁₀ O	C ₆ H ₃ CH(CH ₃)OH	BuLi/ether/-30°- 25°/0.5 hr BuLi/pet. ether, TMEDA/reflux/ 11 hr	(n-C₄H₄O)₃B (H₃O*) C₄H₃CHO	$X = B(OH)_2$ (36) α^{1} -Methyl- α^{2} -phenyl-o-xylene- α^{1}, α^{2} -diol (88)	115, 114 244b
20	C ₀ H ₁₀ O ₂	m-CH3OC2H4CH2OH	BuLi/hexane, TMEDA/60°/ 5 hr	CO ₂ (CH ₂ N ₂)	$\begin{array}{c} & (53), \\ CH_3O \end{array} \begin{pmatrix} (53), \\ CH_3O_2C \end{pmatrix} \begin{pmatrix} CH_2OH \\ (6) \\ OCH_3 \end{pmatrix}$	245
		CH3 OT				
	C8H10O2S	(s) of	BuLi/ether/25°/ 45 min, reflux/15 min	C ₆ H ₃ CN (H ₃ O*)	3-Acetyl-2-benzoylthiophene (27)	413
	С,НиО	C ₆ H ₅ CH(C ₂ H ₅)OH	BuLi/pet. ether, TMEDA/reflux/ 11 hr	С,н,сно	a ⁱ -Ethyl-a ² -phenyl-o-xylene-a ⁴ ,a ² -diol (82)	2446
		C,H,C(CH,)2OH	BuLi/pet. ether, TMEDA/reflux/ 11 hr	С₅н₄сно	α ^s ,α ¹ -Dimethyl-α ² -phenyl-o-xylene-α ¹ ,α ² - diol (86) CH-	244b
	C ₉ H ₁₂ O ₂	m-CH3OC6H4CH(OH)CH3	BuLi/hexane, TMEDA/60°/* 5 hr	CO ₂ (CH ₃ N ₂)	CH_{3O} (62), CH_{3O} (62), $CH(OH)CH_{3}$ (14)	245
					CH ₃ O ₂ C OCH ₃ CH ₃ O ₂ CH ₂ OH	
311	C ₂ H ₁₂ O3	3,5-(CH3O)2C2H3CH2OH	BuLi/hexane, TMEDA/60°/* 5 hr	CO ₂ (CH ₂ N ₃)	$CH_{3}O_{2}C + OCH_{3}$ $CH_{3}O_{4}C + OCH_{3}O + OC$	245
	C ₉ H ₁₃ NO	C ₆ H ₃ CH(OH)CH ₂ NHCH ₃	BuLi/ether/25°/ 24 hr	(CH ₃) ₃ SiCl	a -[(Methylamino)methyl]-o-(trimethylsilyl)benzyl alcobol (21)	175

TABLE XLV. ALKYL ARALKYL ETHERS AND ARALKYL ALCOHOLS (ORTHO, BETA) (Continued)

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
		CH(OC ₂ H ₅) ₂				
	C ₉ H ₁₄ O ₂ S	\bigtriangledown	BuLi/ether/-30°- reflux/20 min	"S"+CICH ₂ CO ₂ CH ₃ (H ₃ O ⁺)	Methyl[(3-formyl-2-thienyl)thio]acetate (77)	427
			BuLi	DMF (H ₂ O*)	2,3-Thiophenedicarboxaldehyde (85)	428
		CH(OC ₂ H ₅) ₂				
	C ₉ H ₁₄ O ₂ Se	Se	BuLi/ether/ reflux	I2	3-(Diethoxymethyl)-2-iodoselenophene ()	396
		- Marchael	BuLi/ether/40°/ 1 hr	DMF	2,3-Selenophenedicarboxaldehyde, 3-(diethyl acetal) (80)	283
312	C10H11NO		t-BuLi/ether/ 25°/1 hr	CO2	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	85
		CH ₂ OCH ₃			CH ₂ OCH ₃	
				\frown	\frown	
				N CN (H ₃ O ⁺)	X = (56)	85
				CN		
				(H ₃ O ⁺)	$\mathbf{X} = \begin{bmatrix} \mathbf{N} \\ \parallel \\ \parallel \end{bmatrix}$ (56)	85
				N	co	
				C ₆ H ₅ CN (H ₃ O ⁺)	$X = COC_6H_5$ (84)	85
				C ₆ H ₅ CHO C ₄ H ₅ N(CH ₅)CHO	$X = CH(OH)C_{s}H_{s} (40)$ $X = CHO (46)$	85 85
				p-CH3OC6H4CN (H3O*)	$\mathbf{X} = \mathbf{COC}_{\mathbf{n}}\mathbf{H}_{4}\mathbf{OCH}_{3} - p (70)$	85
	C10H14O2	m-CH3OC6H4C(CH3)2OH	BuLi/hexane, TMEDA/60°/	CO ₂ (CH ₂ N ₂)	7-Methoxy-3,3-dimethylphthalide (46)	245
					CH-O CH ₃	
	C10H14O3	3,5-(CH3O)2C6H3CH(OH)CH3	BuLi/hexane, TMEDA/60°/ 5 hr	$CO_2 (CH_2N_2)$		245
					CH ₃ O CH ₃ O CH(OH)CH ₃	
					CH ₃ O ₂ C	
					CH(OH)CH-N(CH-)-	
31	C10H15NO	C ₆ H ₃ CH(OH)CH ₂ N(CH ₃) ₂	BuLi/ether/25°/ 24 hr	СНЧ	$\mathbf{X} = \mathbf{CH}_{3} (47)$	175
L2				CH2O	X=CH ₂ OH (33)	175
				(CH ₃) ₃ SiCl	$X = Si(CH_3)_3$ (61) $X = C(C, H_3) OH$ (48)	175
		\int		(0,13/200		
			10.000			
	C11H10O2S2	Ls Ls	BuLi/ether/-35° to -20°/20 min	"S" (H ₃ O*)	$s s s s s s^{(35)}$, $s s s s^{(9)}$	436
					~~~	
					S S S (6)	

TABLE XLV. ALKYL ARALKYL ETHERS AND ARALKYL ALCOHOLS (ORTHO, BETA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Ref
-	6			9	
C. State of the		in the state	51	( The man	-
$\begin{array}{c} C_{11}H_{10}O_2S_2\\ (Contd.) \end{array}$	(s) (s)	BuLi/ether/-35°	I ₂	$\left( \left\langle S \right\rangle _{I} \right)_{2}^{C} $ (56)	294
		BuLi/ether/ reflux/15 min	CO2 (H3O*)	3,3'-Carbonyldi-2-thiophenecarboxylic acid (93)	437
	CH ₃ O				
C11H14CINO		BuLi/ether/0"/	(CH ₃ S) ₂	2-[4-Chloro-2-(methylthio)phenyl]-2,3- dimethyloxazolidine (80)	2
	OCH ₂			CH ₃ O	
	X.			L.	
C11H14O2	ОН	BuLi/hexane,	CO2 (CH2N2)	(80)	24
	$\cup$	TMEDA/60"/ 5 hr		$\bigcirc$	
C11H16O	C ₆ H ₅ CH(C ₄ H ₉ -n)OH	BuLi/pet. ether, TMEDA/reflux/ 11 hr	C₅H₅CHO	$\alpha^{i}$ -Butyl- $\alpha^{2}$ -phenyl- $\sigma$ -xylene- $\alpha^{i}$ , $\alpha^{2}$ -diol (92)	24
C11H17NO2	p-CH ₃ OC ₆ H ₄ CH(OH)CH ₂ N(CH ₃ ) ₂	BuLi/ether/25°/ 24 hr	(C ₆ H ₅ ) ₂ CO	$\alpha^{1}$ -[(Dimethylamino)methyl]-4-methoxy- $\alpha^{2}$ , $\alpha^{2}$ - diphenyl-0-xylene- $\alpha^{1}$ , $\alpha^{2}$ -diol (48)	17
	<b>ОСН</b> 3			CH ₃ O O	
C.H.O.	ОН	Bul i/bexane	CO ₂ (CH ₂ N ₂ )	(42).	24
012111602	CH.	TMEDA/60°/	002(0112112)	CH.	
				CH ₃ O ₂ C OH (23) CH ₂	
				S CH(OH)CH ₃	
C13H11FO2S	o-reena o	BuLi/ether/0°/ 2 hr	Сн₃сно	(60)	2
	c°H²			C ₆ H ₄ F-0	
C15H12O2S	(s)	BuLi/ether/ reflux/2 hr	CO ₂ (H ₃ O*)	3-Benzoyl-2-thiophenecarboxylic acid (43)	41
	-			$\prec^{\mathbf{x}}$	
C14H15CIN2O	P-CIC.H. N-THP	BuLi/ether/0°/	CH ₂ O	P-CIC ₆ H4 N-THP	
	h 010014			$X = CH_2OH$ (73)	2
	0		(C ₆ H ₅ S) ₂	$X = CONTLANS^{-1} (03)$ $X = SC_{S}H_{S} (80)$	2
0.8.0	$\sim$	BuLi, NaOC, He-t/	CO-	(88)	52
-141118U2	СН,0	hexane/25°/ 1 hr	3.	CH30 CO HOH	
	(C.H.O).CH (CH(OC.H.).			00211	
C.H.O.S	Children Children 2012	BuLi/ether/-40%	DMF	2,3,4-Thiophenetricarboxaldehyde, 3,4-bis(diethyl	28
C14H24O4S	S Contraction	BuLi/ether/-40°/ 1 hr	DMF	2,3,4-Thiophenetricarboxaldehyde, 3,4-bis(diethyl acetal) (30)	



TABLE XLV. ALKYL ARALKYL ETHERS AND ARALKYL ALCOHOLS (ORTHO, BETA) (Continued)



TABLE XLVI. a-SILVLOXYSTYRENES (ORTHO)

TABLE XLVII. ARYLCARBOXYLIC ACIDS, ESTERS, AND DIARYLKETONES (ORTHO, BETA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C4H3NO2S	N _S CO ₂ H	BuLi/THF/-65°/ 15 min*	CO2	4,5-Isothiazoledicarboxylic acid (15)	154
C₅H₄O₂S	ζ _S ^{CO₂H}	LDA/THF or ether, HMPA/ -70°	(CH ₃ ) ₃ SiCl	2-(Trimethylsilyl)-3-thiophenecarboxylic acid ()	246
 C ₅ H ₅ NO ₂ S	CH ₃ N S	BuLi/THF/-70°/ 15 min	Br ₂	$\begin{array}{c} CH_3 \\ N_S \\ X \end{array} \qquad \qquad X = Br  (52) \end{array}$	154
		BuLi/THF/-65°/ 15 min*	CO ₂	$X = CO_2 H  (29)$	) 154
			DMF	X = CHO (25)	154
C ₉ H ₁₀ O ₂	C ₆ H ₅ CO ₂ C ₂ H ₅	LTMP/THF/ -78°*	(—)	$(I) (44) \qquad \mathbf{R} = \mathbf{C}_2 \mathbf{H}_5$	53
C10H12O2	C ₆ H ₅ CO ₂ C ₃ H ₇ -n	LTMP/THF/-78°		I (46) $R = C_3 H_7 - n$ I (10) $R = C_4 H_7 - n$	53
C11H14O2	C6H5CO2C4H9-n	LTMP/THF/-78°	(L)	$ \begin{array}{c} R = C_3 H_7^{-1} \\ I  (38) \\ R = C_4 H_9^{-n} \end{array} $	53
C13H10O	$(C_6H_5)_2CO$	LTMP/THF/-78°	()	3-Hydroxy-1,1,3-triphenylphthalan (80)	53

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
	SCH3				
C ₅ H ₆ S ₂	$\sqrt{s}$	BuLi/ether/ reflux/0.5 hr	CO2	3-(Methylthio)-2-thiophenecarboxylic acid (70)	248
C ₆ H ₈ S ₂	CH ₃ SCH ₃	BuLi	CO2	5-Methyl-2-(methylthio)-3-thiophene- carboxylic acid (27)	404
C₂H8S	C ₆ H ₃ SCH ₃	BuLi/5 min	CO ₂ (CH ₂ N ₂ )	$ \begin{array}{c} \text{SCH}_{3} \\ \text{CO}_{2}\text{CH}_{3} \\ \text{o+m (I),} \end{array} $	
				SCH ₂ CO ₂ CH ₃ (II)	
				(І+П, 30) (І:П, 37:63)	58
C ₈ H ₁₀ OS	m-CH3OC6H4SCH3	BuLi/ether/ reflux/4 hr	CO ₂	6-(Methylthio)-o-anissc acid (46)	574
C ₈ H ₁₀ S	C6H5SC2H5	BuLi/15 hr	CO ₂ (CH ₂ N ₂ )	$ \begin{array}{c}  SC_2H_5 & o \text{ (III),} \\  + CO_2CH_3 & m \text{ (IV),} \\  & m \text{ (IV),} \\  & p \text{ (V)} \end{array} $	58
				(III+IV+V,27) (III:IV:V,55:19:5)	
	SC4H9-4				
$C_8H_{12}S_2$	$\langle \rangle$	BuLi	CO2	3-(t-Butylthio)-2-thiophenecarboxylic acid (—), 4-(t-butylthio)-2- thiophenecarboxylic acid (—), 3-(t-butylthio)-2,5-thiophenedicarboxylic acid (—)	424,
	C2H5 SC2H5	Ē.	CO2	5-Ethyl-2-(ethylthio)-3-thiophene- carboxylic acid (7)	404
C10H14OS	m-CH ₃ OC ₆ H ₄ SC ₃ H ₇ -	i BuLi/ether/ reflux/4 hr	CO2	6-(Isopropylthio)-o-anisic acid (43)	574
C ₁₁ H ₁₁ NOS	C ₆ H ₅ NO SC ₂ H ₅	BuLi/THF/-30°/ 0.5 hr	CO2	5-(Ethylthio)-3-phenyl-4-isoxazole- carboxylic acid (73)	232
	C ₆ H ₅				

TABLE XLVIII. ALKYL ARYL SULFIDES (ORTHO, BETA)

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
	C ₈ H _e S ₂	$\nabla^{s} \nabla$	BuLi/ether/ reflux/1 hr	CuCl ₂	(52) S (52)		144
	C12H8OS		BuLi/ether/ reflux/24 hr	O ₂	$\alpha_{s}^{\circ}$	X=OH (16)	288
			BuLi	COs	CO.H CO.H	X=CO ₂ H (37)	237
CCE			BuLi/ether/ reflux	÷			236, 2
	C ₁₂ H ₈ S	$\mathcal{A}_{s}$	BuLi/ether	Br ₂	$\alpha_s \beta_x$	X=Br (77)	152, 24
			BuLi/THF, ether/	CO2		X=CO ₂ H (60)	560
			BuLi/ether/ reflux/3 hr	(C ₆ H ₅ ) ₃ SiCl		$X = Si(C_6H_5)_3$ (42)	452
	$C_{12}H_8S_2$		BuLi/ether/ reflux/22 hr	0,		X = OH (3)	288
			BuLi/ether/ 25°/40 hr	CO2		X=CO ₂ H (28)	250
	C12H10S	(C ₆ H ₃ ) ₂ S	" BuLi/ether	CH3ONH2 (π-C4H2O)3B (H3O ⁺ ) (C6H3)3SiCl (CH3)3SiCl	Trimethyl[o-(phenylthio)phe trimethyl[m-(phenylthio)p	$X = NH_3$ (26) $X = B(OH)_2$ (22) $X = Si(C_6H_3)_3$ (10) myl]silane (1), henyl]silane (II)	250 250 250 252
					(I:II, 9:1) I (23)		251
		CH ₃			CH ₃	CH ₃ X	
	C13H11NS		BuLi/ether/ 30 hr	CO;	()	J _s J	
323				CH ₂ O Ethylene oxide (CH ₃ O) ₂ SO ₂ CH ₃ CO ₂ Li C ₂ H ₃ CO ₂ Li C ₄ H ₃ CO ₃ Li C ₄ H ₃ N(CH ₃ )CHO	(III) (16) III    	(IV) (14) $X = CO_2H$ $X = CH_2OH$ (10) $X = (CH_2)_2OH$ (10) $X = CH_3$ (25) $X = COCH_3$ (23) $X = COC_2H_5$ (17) $X = COC_2H_5$ (20) X = CHO (10)	177, 18 177 177 177 177 177 177 177 177
	C14H13NS	C,H _s	Buli/ether/30 hr	CO2	$(Y) (14) C_{1}^{C_{2}H_{5}} \cdot C_{1}^{C_{2}H_{5}} $	(VD (13) X = CO-H	177 1

TABLE XLIX. DIARYL SULFIDES AND CONDENSED DIARYL SULFIDES (ORTHO	, BETA	)
------------------------------------------------------------------	--------	---

TABLE XLIX. DIARYL SULFIDES AND CONDENSED DIARYL SULFIDES (ORTHO, BETA) (Continued)

Formula	a Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
C14H13M			C₀H₅CO₂Li	w.	$X = COC_{d}H_{s}$ (18)	183a, 17
(Contd.)	∽s∼		(C ₆ H ₅ ) ₂ CO	"	$X = C(C_6H_5)_2OH$ (55)	178
C16H10	s $OOS$	BuLi	CO	CCC+x	X=CO ₂ H (51)	534
	(CH ₂ ) ₃ N(C ₂ H ₅ )		(CH3O)2SO2		X = CH ₃ (70)	534
C19H24	$N_{2S}$ $()$	BuLi	(C ₆ H ₃ ) ₂ CO	10-[(3-Diethylamino)propyl] phenothiazinemethanol (1	-α,α-diphenyl-4- 3)	178

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C ₈ H ₁₃ O ₂ S ₃	SO2C4H9-1	BuLi/THF/ -20°/9.5 hr	CO2	5-(t-Butylsulfonyl)-2,4-thiophenedicarboxylic acid (68)	136
	126.11.02		DMF	5-(t-Butylsulfonyl)-2,4-thiophenedicarboxaldehyde (59)	136
	SO ₂ C ₄ H ₉ - <i>t</i>	BuLi	CO2	<ul> <li>3-(t-Butylsulfonyl)-2,4-thiophenedicarboxylic acid (42)</li> <li>3-(t-butylsulfonyl)-2,5-thiophenecarboxylic acid (8),</li> <li>3-(t-butylsulfonyl)-2-thiophenecarboxylic acid (4)</li> </ul>	, 565
C ₉ H ₈ N ₂ O ₂ S	SO ₂ C _e H ₅	'-BuLi/IHF/ −20°/10 min	D ₂ O	X = D (100)	573
		BuLi/THF/	l ₂	X=I (71)	573
		(-BuLi/THF/ -20°/0.5 hr	CH2O	$X = CH_2OH$ (10)	573
		BuLi/THF/ 0°/5 min	Cyclohexanone	X = HO (15)	573
		r-BuLi/THF/ 0°/10 min	C ₆ H₅CHO	$\mathbf{X} = \mathbf{CH}(\mathbf{OH})\mathbf{C}_{\mathbf{s}}\mathbf{H}_{\mathbf{s}}  (18)$	573
				X SO ₂ C ₄ H ₉ -1	
C10H14O2S	C6H5SO2C4H0-t	BuLi	ш. С	X=Li (→)	572
		BuLi/THF/ -10°/3 hr	CO2	$X = CO_3 H$ (45)	535

TABLE L. SULFONES (ORTHO, BETA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C10H14O (Contd.)	2S C ₆ H ₅ SO ₂ C ₄ H ₆ -1	RLi/20°/20 hr	CO2	HO ₂ C $R$ CO ₂ H $R=C_3H_5$ (42) $R=C_4H_9-n$ (44)	535
		"Excess" BuLi	i.	$t-C_{4}H_{9}$ $CO_{2}H$ (40)	572
C ₁₁ H ₁₆ O	2S p-CH3C6H4SO2C4H9-1	BuLi	÷	$\bigcup_{\substack{i=1\\ i \in \mathcal{O}_2C_4H_9-t}}^{CH_3} (-)$	572
		"Excess" Buli	CO3	$CH_{3}$ $I - C_{4}H_{9}$ $CH_{3}$ $CO_{2}H$ $(5)$ $CH_{3}$	572
C12H8O2	s $O_{SO_2}$	BuLi/ether/ -30°	CO2	$SO_2$ $CO_2H$ (18)	536
		3 BuLi	8.0	$\sum_{CO_2H} \sum_{CO_2H} CO_2H $ ⁽²⁰⁾	536
C12H8O2	$s_2 \qquad \bigcirc s_{SO_2}^S \bigcirc$	BuLi/ether/ —70°/16 hr	CO ₂	$\bigcup_{SO_2}^{S} \bigcup_{CO_2H}^{(41)}$	250
107		CeHsLi/ether/ 0°/1 hr, 25°/ 3 hr	14.1	$ \begin{array}{c}  SO_2 \\  SO_2 \\  CO_2H \\  CO_2H \end{array} $ (54)	250
C ₁₂ H ₈ O ₃		BuLi/ether/ 0°-25°	CO2	O $SO_2$ $CO_2H$ (46)	537
		BuLi/ether/ -45° to -10°	÷	$ \begin{array}{c}  & O \\  $	236
C12HoBr	O ₂ S C ₄ H ₃ SO ₂ C ₄ H ₄ Br-m C ₆ H ₃ SO ₂ C ₆ H ₄ Br-p	BuLi/ether/0° BuLi/ether/0°	CO2 CO2	2-Bromo-6-(phenylsultonyl)benzoic acid (54) 5-Bromo-2-(phenylsulfonyl)benzoic acid (52)	69 69

# TABLE L. SULFONES (ORTHO, BETA) (Continued)

Formula	Compond Lithiated	Conditions	Substrate	Product and Yield (%)		Ref.
				SO ₂ C ₆ H ₅		
C12H10O2S	(C ₆ H ₃ ) ₂ SO ₂	BuLi/ether/-40° to -30°/1 hr	CO3	↓ x	X = CO ₂ H (90)	538, 69 536
		BuLi/ether/-40° to -30°/1 hr	C ₆ H ₅ SO ₂ F		$X = SO_2C_6H_5$ (73)	538
			C ₆ H ₃ SO ₂ Cl (C ₆ H ₅ ) ₂ CO	s0 ₂	X = CI (90) $X = C(C_6H_5)_2OH$ (63)	538 538
		4 BuLi/ether/ -30°	CO2		(22)	536
		Bul i/ether	SiC14	$\bigcup_{SO_2}^{SO_2} $	-)	539
			(CH ₃ ) ₂ SiCl ₂	()	R=CH ₃ (24)	539
			(C ₆ H ₅ ) ₂ SiCl ₂		$\mathbf{R} = \mathbf{C}_6 \mathbf{H}_5  (8)$	539
	$\square$					
C12H20O4S3	I-C4H9SO2 S SO2C4H9-1	BuLi/-40° to -20°	CO2	2,5-Bis(t-butylsulfonyl)thio carboxylic acid (I) (41)	phene-3- )	540
		"Excess" BuLi		I, 2,5-Bis(t-butylsulfonyl) 3,4-dicarboxylic acid	thiophene- J (II)	540
C ₁₃ H ₁₂ O ₂ S	Ċ ₆ H₃SO₂Ċ6H₄ĊH₃-₽	BuLi/ether/0°/ 1.5 hr, 25°/1 hr	CO2	<ul> <li>(I+II, →) (I:II, →)</li> <li>6-(Phenylsulfonyl)-m-toluic o-(p-toluenesulfonyl)benz</li> <li>(III+IV, 60) (III:IV, 3)</li> </ul>	e acid (III), zoic acid (IV) 3:2)	541
C14H11NO2S	SO-C.H.	r-BuLi/THF/ -12°-25°/ 20 min		X N N N	$X = CO_2 H  (63)$	85
			CICO ₂ C ₂ H ₃	50206115	$X = CO_2C_2H_5$ (75)	85
			СЛОСНО		X=CH(OH)	32)
		0	COCI		X = CO (60)	85 85
			C ₆ H ₃ CHO C ₆ H ₃ COCI COCH ₃		$X = CH(OH)C_6H_5  (55)$ $X = COC_6H_5  (65)$	85 85
			$\square$		X=C(CH ₃ ) OH N (	35)





#### TABLE L. SULFONES (ORTHO, BETA) (Continued)

Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs.
p-CIC ₆ H ₄ SO ₂ NHCH ₃	BuLi/THF/ -10°/1 hr	СН₂=СНСНО	CI SO ₂ NHCH ₃	(>90) CH ₂	24
C ₆ H ₃ SO ₂ NHCH ₃	BuLi/THF/0°/ 15-20 min	CO2	SO ₂ NHCH ₃	X=CO ₂ H (49)	545
	BuLi/THF/ -10°/3 hr	СН₂=СНСНО		X = CH(OH)CH=CH ₂ (>80)	24
	BuLi/THF/0°/ 15-20 min	Cyclohexanone		X = (72)	545
	BuLi/THF/0° BuLi/THF/0°/ 15-20 min	C₅H₅NCO C₅H₅COCH₃		$\begin{array}{l} X = \text{CONHC}_6\text{H}_5  (67) \\ X = \text{C}(\text{CH}_3)\text{C}_6\text{H}_5  (58) \\   \\ \text{OH} \end{array}$	496 545
		(C ₆ H ₅ ) ₂ CO	80	$X = C(C_6H_5)_2OH$ (82)	545
	BuLi/THF/0°/ 0.5 hr	C ₆ H ₅ CN	N-CH ₃ (64)		201
C ₆ H ₅ SO ₂ N(CH ₃ ) ₂	BuLi/THF/0°/ 0.5 hr	CO2	SO ₂ N(CH ₃ ) ₂	X=CO ₂ H (75)	254
	Compound Lithiated p-CIC ₆ H ₄ SO ₂ NHCH ₃ C ₆ H ₅ SO ₂ NHCH ₃	Compound Lithisted     Conditions       p-ClC_sH_sO_2NHCH_s     Bul_i/THF/ -10°/1 hr       C_sH_sO_2NHCH_s     Bul_i/THF/0°/ 15-20 min       Bul_i/THF/     -10°/3 hr       Bul_i/THF/0°/ 15-20 min     Bul_i/THF/0°/ 15-20 min       Bul_i/THF/0°/ 15-20 min     Bul_i/THF/0°/ 15-20 min       C_sH_sO_2N(CH_s)_2     Bul_i/THF/0°/ 0.5 hr	Compound Lithiated         Conditions         Substrate           p-ClC_sH_sO_3NHCH_s         BuLi/THF/ -10°/1 hr         CH_2=CHCHO Ch_2=CHCHO 15-20 min         CO2 CO2 Ch_2=CHCHO -10°/3 hr         CO2 CH_2=CHCHO -10°/3 hr         CH_2=CHCHO CH_2=CHCHO -10°/3 hr         CH_2=CHCHO CH_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO Ch_2=CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO CHCHO	Compound LithiatedConditionsSubstrateProduct and Yield (%)p-ClC_aH_sO_2NHCH_sBuLi/THF/ $-10^{9/1}$ hrCH_s=CHCHO $-10^{9/1}$ hr $(f_{s}) = (f_{s}) = (f$	$\begin{array}{c c} \hline Compound Lithisted & Conditions & Substrate & Product and Yield (%) \\ \hline Compound Lithisted & Chain $

TABLE LI. ARYLSULFONAMIDES (ORTHO, BETA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Rei
C ₈ H ₁₁ NO ₂ S (Contd.)	C ₆ H ₂ SO ₂ N(CH ₃ ) ₂	( <b>*</b> )	C ₆ H ₃ CN	X=CC ₆ H ₃ (79)    NH	254
		(† 1	C ₆ H ₅ NCO (C ₆ H ₅ ) ₂ CO	$X = CONHC_{o}H_{s}$ (57) $X = C(C_{o}H_{s})_{2}OH$ (82)	254 254
C ₂ H ₁₇ NO ₂ S ₂ Si	(CH ₃ ) ₃ Si SO ₂ N(CH ₃ ) ₂	BuLi/ether/0°/ 6 hr	CO2	2-(Dimethylsulfamoyl)-5-(trimethylsilyl)- 3-thiophenecarboxylic acid (10)	135
C10H14CINO2S	p-ClC ₆ H ₄ SO ₂ NHC ₄ H ₉ -r	BuLi/THF/25°/ 1-2 hr	CO₂	$CI = X = CO_2H  (25)$	255
		BuLi/THF/ -30°/1 hr	$(\Box_{N})_{s}$	$X = \frac{1}{S} $ (32)	24
			$\left( \bigcap_{N} \int_{2}^{S} \right)_{2}$	$\mathbf{X} = \mathbf{S} - (\mathbf{M} \ (30))$	24
C10H14FNO2S	p-FC ₆ H ₄ SO ₃ NHC ₄ H ₉ -t	" BuLi/THF/25°/ 1–2 hr	(C ₆ H ₅ S) ₂ CO ₂	$X = SC_6H_5$ (50) 2-(t-Butylsulfamoyl)-5-fluorobenzoic acid (35)	24 255
C10H13NO2S	C6H3SO2NHC2He+t	BuLi/THF/25%	CO2	$\bigcup_{\mathbf{X}} \begin{array}{c} \mathrm{CO_2 NHC_4 H_9} - t \\ \mathrm{X} = \mathrm{CO_2 H}  (48) \end{array}$	255
		BuLi/THF/0º/	СН2=СНСНО	X=CH(OH)CH=CH ₂ (>80)	) 24
C11H17NO2S	C6H9SO2N(CH3)C6H9-1	". BuLi/ether/0°/ 1 hr	1-C₄H₀NCO DMF	$X = CONHC_4H_9-t  (>80)$ N-t-Buryl-o-formyl-N-methylbenzenesulfonamide (72)	24
	p-CH3C6H4SO2NHC4H9-1	BuLi/THF/25°/	CO2	6-(t-Butylsulfamoyl)-m-toluic acid (28)	25
C11H17NO3S	p-CH3OC2H4SO3NHC4H9-t	1-2 hr BuLi/THF/25°/ 1-2 hr	CO2	6-(t-Butylsulfamoyl)-m-anisic acid (27)	25:
C ₁₃ H ₂₁ NO ₂ S ₂ Si	(CH ₃ ) ₃ Si SO ₂ N(C ₂ H ₅ ) ₂	BuLi/ether, hexane, TMEDA/ -30°/6 hr	co,	2-(Diethylsulfamoyl)-5-(trimethylsilyl)- 3-thiophenecarboxylic acid (44)	135
			25.1	SO2NHC6H5	÷.
C12H11NO25	C ₆ H ₅ SO ₂ NHC ₆ H ₅	BuLi/THF/0º/ 15-20 min	CO2	X=CO ₂ H (22)	54.
		BuLi/THF/0°/ 0.5 hr	C ₆ H ₅ CN	X = CC ₆ H ₅ (64)* ∥ NH	20
		BuLi/THF/0° BuLi/THF/0°/ 15-20 min	C ₆ H ₅ NCO C ₆ H ₅ COCH ₅	$X = CONHC_{e}H_{s}  (53)$ $X = C(CH)_{s}C_{e}H_{s}  (48)$ $ $	490 54:
		н.	(C ₆ H ₅ ) ₂ CO	$X = C(C_6H_5)_2OH  (50)$	545
C13H11NO3S	C ₆ H ₃ SO ₂ NHCOC ₆ H ₃	BuLi/THF/ -78°/4 hr	-	() SO ₂ (9)	546
C13H13NO2S	C ₆ H ₅ SO ₂ N(CH ₃ )C ₆ H ₅	CH_Li/THF/ 25°/1-2 hr	H ₂ O	N-Methyl-o-(phenylsulfonyl)aniline (89)	256
			С°н°сно	SO ₂ C ₆ H ₄ NHCH ₃ -0 (85)	256
	P-CH-CH-SO-NHC-H-	Bul i/THE	(C.H.).CO	2 ² Hudropus ² 2 ² dinhand 2.4 milenautiferentitie (00)	

TABLE LL ARYLSULFONAMIDES (ORTHO, BETA) (Continued)

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
	C14H15NO2S	C ₆ H ₅ SO ₂ N(C ₂ H ₅ )C ₆ H ₅	CH ₃ Li/THF/ 25°/1-2 hr	H ₂ O	N-Ethyl-o-(phenylsulfonyl)aniline (40)	256
		o-CH-C-H-SO-N(CH-)C-H-		H-O	N-Methyl-o-(o-tolylsulfonyl)anilipe (50)	256
		p-CH ₃ C ₆ H ₄ SO ₂ N(CH ₃ )C ₆ H ₅		H ₂ O	N-Methyl-o-(p-tolysulfonyl)aniline (52)	256,257
	C14H15NO3S	p-CH ₃ OC ₆ H ₄ SO ₂ N(CH ₃ )C ₆ H ₅	BuLi/THF/25°/ 1-2 hr	H₂O	o-(p-Methoxyphenylsufonyl)-N-methylaniline (45)	256
		SO2NHC4H9-1				
	C14H17NO2S	$\square$	BuLi/THF/25°/ 1–2 hr	CO ₂	8-(t-Butylsulfamoyl)-1-naphthoic acid (14)	255
w		SO2NHC4H9-t	B.1 :/TUE/25%	<b>co</b>	7 (r Dutskeilferrenk) 1 austrik in sid (20)	255
336			1-2 hr	0.	2-(1-Butyisutramoyi) -1-naphthoic acid (30)	255
	C13H15NO2S	N-C ₆ H ₅	BuLi/THF/25°	H ₂ O	SO2 ("good")	257
		(CH ₃ ) ₂			(CH ₃ ) ₂ H	
	C15H17NO2S	p-CH ₃ C ₆ H ₄ SO ₂ N(C ₂ H ₅ )C ₆ H ₅	CH3Li/THF/ 25°/1-2 hr	H ₂ O	N-Ethyl-o-(p-tolylsulfonyl)aniline (81)	256
	C15H17NO3S	p-CH ₃ C ₆ H ₄ SO ₂ N(CH ₃ )C ₆ H ₄ OCH ₃ -p p-CH ₃ OC ₆ H ₄ SO ₂ N(C ₂ H ₅ )C ₆ H ₅	CH_LI/THF/	H ₂ O	N-Methyl-2-(p-tolylsulfonyl)-p-anisidine (61) N-Ethyl-o-(p-methoxyphenylsulfonyl)aniline (57)	256 256
	C15H17NO4S	p-CH ₃ OC ₆ H ₄ SO ₂ N(CH ₃ )C ₆ H ₄ - OCH ₃ -p	BuLi/THF/ 25°/1-2 hr	H ₂ O	2-(p-Methoxyphenylsulfonyl)-N-methyl-p-anisidine (53)	256
	C ₁₅ H ₁₈ N ₂ O ₂ S	p-(CH ₃ ) ₂ NC ₆ H ₄ SO ₂ N(CH ₃ )C ₆ H ₅	BuLi/THF/25°/ 1-2 hr	H₂O	o-(p-Dimethylaminophenylsulfonyl)-N-methylaniline (54)	256
	C16H17NO2S	CH ₃ CH ₃ C	BuLi/THF/25°	H₂O	CH ₃ CH ₁ ("good")	257
	C18H15NO2S	C6H3SO2N(C6H3)2	BuLi/THF/25°/	H ₂ O	H N-Phenyl-o-(phenylsulfonyl)aniline (86)	256
	C19H17NO2S	p-CH ₃ C ₆ H ₄ SO ₂ N(C ₆ H ₅ ) ₂	1-2 hr C ₆ H ₅ Li/ether/	H ₂ O	N-Phenyl-p-(tolylsulfonyl)aniline (48)	258
	C ₂₆ H ₂₁ NO ₂ S	$CH_3 \xrightarrow{(C_6H_5)_2} SO_2 \\ CC_6H_5)_2$	34° BuLi/THF/25°	H₂O	$(C, H_1)$ ("good")	257

337

" The product is a mixture of open-chain and ring isomers. Note: References 360-607 are on pp. 355-360.

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C ₂ HClF ₂	CF ₂ =CClH	BuLi/ether/-100°	CH ₃ COCH ₃	2-Chloro-3-methylcrotonic acid (15)	172
	*	n 10 10.0-1 m	CF ₃ COCF ₃ CH ₃ COCF ₃	CF ₂ =CCIX $X = C(CF_3)_2OH$ (56) $X = C(CF_3)CH_3$ (61)   OH	172 172
C ₂ HF ₃	CF2=CFH	" BuLi/ether/-100° to -78°/0 5-1 hr	(C ₂ H ₅ ) ₃ SiCl CH ₃ COCH ₃	$X = Si(C_2H_5)_3  (10)$ 2-Fluoro-3-methylcrotonic acid (30)	173 172
		10 - 78 (0.3-1 m 1) 1)	CO ₂ CF ₃ COCF ₃ (C ₂ H ₅ ) ₃ SiCl	CF ₂ =CFX $X = CO_2H$ (57) $X = C(CF_3)_2OH$ (63) $X = Si(C_2H_5)_3$ (79)	172 172 173
C₄HF₅	F ₂ F ₂	CH3Li/ether/-70°	СН₃СНО	2,3,3,4,4-Pentafluoro-α-methyl-1- cyclobutene-1-methanol (23)	263
C₄H₃FS	<b>∠</b> S ^F	BuLi/ether/reflux/ 15 min	CO2	3-Fluoro-2-thiophenecarboxylic acid (75	i) 385
C ₅ HF ₇	$F_2$	CH ₃ Li/ether/-70°	СН₃СНО	2,3,3,4,4,5,5-Heptafluoro-α-methyl-1- cyclopentene-1-methanol (42)	263
C ₆ HF₅	Pentafluorobenzene	BuLi/THF/-70°/ 5 min	CO2	$F + F + F = CO_2 H  (82)$	547
		BuLi/ether/-55°/ 2 hr	CF3COCF3	$X = C(CF_3)_2OH$ (79)	548
C₅HF9	$\overbrace{F_2}^{F_2} \overbrace{F_2}^{F_2} F$	CH3Li/ether/-70°	Br ₂	$F_2 \underbrace{\bigvee_{F_2}}_{F_2} F_2 F_F X = Br  (46)$	263
			I₂ CO₂ CH₃CHO	X = 1 (59) $X = CO_2H$ (77) $X = CH(OH)CH_3$ (63)	263 263 263
C ₆ H ₂ F ₄	1,2,3,4-Tetrafluoro- benzene	BuLi/THF/70°/ 0.5 hr	HgCl ₂	F + F = Hg + F = F $F + F = F$ $F = F$ $F = F$ $F = F$	262
		ŵ	Cul	$\mathbf{X} = \bigvee_{\mathbf{F}}^{\mathbf{F}} (69)$	262
		и И В	CO ₂ (CH ₃ ) ₂ SiHCl (CH ₃ ) ₃ SiCl	$X = CO_2H$ () $X = SiH(CH_3)_2$ (64) $X = Si(CH_3)_3$ (82)	262 262 262
	1,2,4,5-Tetrafluoro-	BuLi/ether/-65°/	CO2	$F \xrightarrow{F} X $ (I) $X = CO_2H$ (85)	.277

TABLE LII. ARYL FLUORIDES AND VINYL FLUORIDES (ORTHO, BETA)
Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C ₆ H ₂ F ₄ (Contd.)	1,2,4,5-Tetrafluoro- benzene	BuLi/THF/-65°/ 2 hr	CF ₃ COCF ₃	(I) (11), $\begin{array}{c} F \\ X \\ F \end{array} \qquad (61)$	548
C ₆ H ₂ F ₄ S	2,3,5,6-Tetrafluoro- benzenethiol	BuLi/THF/-70°/ 1 hr	CO2	$X = C(CF_3)_2OH$ 2,3,5,6-Tetrafluoro-4-mercaptobenzoic acid (77)	549
				(CH ₂ ), Si J Si(CH ₂ ),	
C ₆ H ₃ F ₃	1,3,5-Trifluoro- benzene	BuLi	(CH ₃ ) ₃ SiCl	F F ()	550
C ₆ H ₃ F ₄ N	2,3,5,6-Tetrafluoro-	BuLi/THF/-70°/	CO ₂	4-Amino-2,3,5,6-tetrafluorobenzoic	549
C ₆ H₄CIF	aniline p-FC ₆ H₄Cl	3 hr BuLi/THF/-70°/	(CH ₃ S) ₂	acid (37) 5-Chloro-2-fluorophenyl methyl	23
$C_6H_4F_2$	m-Difluorobenzene o-Difluorobenzene	4 hr BuLi/THF/-65° BuLi/THF BuLi/THF,	CO ₂ (CH ₃ ) ₃ SnCl FClO ₃	2,6-Difluorobenzoic acid (88) (2,6-Difluorophenyl)trimethylstannane(60) 1,2,3-Trifluorobenzene ()	549, 55 306 551
		hexane/-50°	CO ₂	2,3-Difluorobenzoic acid (74)	551
C ₆ H ₅ F	C₅H₅F	BuLi/THF/-50°/ 7 hr	CO2	2-Fluorobenzoic acid (60)	260
C ₇ HF ₇	$F \xrightarrow{CF_3}_F F$	BuLi/THF/-70°/ 1 hr	CO2	$F \xrightarrow{CF_3} F \\ F \xrightarrow{F} F$ $X = CO_2 H  (77)$	549
	Со⁵н	BuLi/THF/-60°/ 0.5 hr	CF ₃ COCF ₃	$X = C(CF_3)_2OH  (61)$	548
$C_7H_2F_4O_2$	F F	BuLi/THF/-65°/ 45 min	Cl ₂	$F \rightarrow F \qquad X = Cl  ()$	277
			"S"	X = SH (69)	277
			CO2	$X = CO_2 H  (94)$ $CH_3$	277
C ₇ H ₄ F ₄	2,3,5,6-Tetrafluoro- toluene	BuLi/THF/-70°/ 1 hr	CO ₂	$F + F = CO_2 H  (88)$	549
		BuLi/THF/-60°/	CF ₃ COCF ₃	x $X = C(CF_3)_2OH$ (91)	548
C ₇ H ₇ F	o-FC ₆ H ₄ CH ₃	0.5 hr BuLi/THF/-50°/	CO2	2-Fluoro-m-toluic acid (3)	260
	p-FC ₆ H ₄ CH ₃	/ hr BuLi/THF/-50°/	CO ₂	6-Fluoro-m-toluic acid (58)	260
C ₁₀ H ₇ F	1-Fluoronaphthalene	/hr BuLi/THF/-50°/	CO ₂	1-Fluoro-2-naphthoic acid (30)	260
	2-Fluoronaphthalene	7 hr BuLi/THF/-60°/ 6.5 hr	CO ₂	2-Fluoro-1-naphthoic acid (II), 3-fluoro-2-naphthoic acid (III) (II+III 70) (II+III 54-46)	261

TABLE LII. ARYL FLUORIDES AND VINYL FLUORIDES (ORTHO, BETA) (Continued)

340

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
	$C_{12}H_2F_8$	$\begin{pmatrix} F \\ \downarrow \downarrow \\ F \\ F \\ F \\ F \\ 2 \end{pmatrix}$	BuLi/THF/-70°/ 1 hr	CO ₂	$\begin{pmatrix} F \\ X \\ X \\ F \\ F \\ F \\ 2 \end{pmatrix} X = CO_2 H (97)$	549
		F	BuLi/THF/-60°/ 1 hr	CF ₃ COCF ₃	F $X = C(CF_3)_2OH$ (74)	548
	C₁₂H7F₄N		BuLi	CO2	4-Anilino-2,3,5,6-tetrafluorobenzoic acid (56)	552
	C₁₄H₅F	F	BuLi/THF/-50°/ 7 hr	Br ₂	9-Bromo-10-fluorophenanthrene (42)	531
		~	A.	CO2	10-Fluoro-9-phenanthrenecarboxylic acid (65)	531

TABLE LII. ARYL FLUORIDES AND VINYL FLUORIDES (ORTHO, BETA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C ₂ HCl ₃	CCI2=CCIH	BuLi/THF, ether, pet. ether/-100°/50 min	CO ₂	Trichloroacrylic acid (81)	167, 168
C ₂ H ₂ Cl ₂	CCl ₂ =CH ₂	BuLi/THF/-110°/ 68 min	CO2	Chloropropiolic acid (86)	167
	a	BuLi/THF/-110% 40 min	Br ₂	(Z)-1-Bromo-1,2-dichloroethylene (26)	167, 168
	a		CO2	(E)-2,3-Dichloroscrylic acid (99)	167
C ₃ H ₂ CINS	NS	BuLi/THF/-65°/ 15 min*	CO2	4-Chloro-5-isothiazolecarboxylic acid (68)	154
			DMF	4-Chloro-5-isothiazolecarboxaldehyde (65)	154
C ₄ H ₂ Cl ₂ Se	CI Se CI	LDA/ether/-70°/2 hr	CO2	2,5-Dichloro-3-selenophenecarboxylic acid (78)	291
	a	LDA/ether/-70°/4 hr	(CH ₃ Se) ₂	2,5-Dichloro-3-(methylselenyl)selenophene (51)	291
C4H3CIO	Q ^r	LDA/THF/-80°/2.5 hr	(CH ₂ ) ₂ C=CHCH ₂ Br	3-Chloro-2-(3-methyl-2-butenyl)furan (41)	566
C₄H₄CINS	CH ₃ NS	BuLi/THF/-65°/ 15 min*	CO2	4-Chloro-3-methyl-5-isothiazolecarboxylic acid (75)	154
			DMF	4-Chloro-3-methyl-5-isothiazolecarboxaldehyde (47)	154

TABLE LIII. ARYL CHLORIDES AND VINYL CHLORIDES (ORTHO, BETA)

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
	C ₄ H ₅ ClO	⟨ <b>J</b> ^{CI}	Buli/THF/-78°	CH₅I	$\int_{O} \int_{X}^{C_1} X = CH_3  (74)$	266
			i.	CH3COCI	$X = (78)$ $CH_3 OAC$	266
			P*	n-CaHol CaHaCHO	$X = C_4 H_9 - \pi$ (62) $X = CH(OH)C_8 H_5$ (77)	266 266
	C ₄ H ₇ ClO ₂	CH30 OCH3	s-BuLi/THF/-100°/ 0.5 hr	HgCl ₂	Bis[(Z)-2-chloro-(1,2-dimethoxyvinyl)]mercury (-	) 600
		ci		CO2	(E)-3-Chloro-2,3-dimethoxyacrylic acid (45)	600
	C ₅ H ₂ Cl ₃ N	and	BuLi/ether/-70°/ 45 min, -20°/2 hr	(CH ₃ O) ₂ SO ₂	2,3,6-Trichloro-4-methylpyridine (45)	265
		$\gamma^{\alpha}$	a balanta ana ana a			
	C ₅ H ₇ ClO		BuLi/THF/25°/2 hr	СН-1	X=CH ₃ (>63)	562
				C2H3I n-C4H9I	$X = C_2 H_s$ (>65) $X = C_4 H_{0} - n$ (>65) Cl	562 562
	C₀HCl₅	Pentachlorobenzene	BuLI/THF/-65°	CO2	$CI + CI = CO_2 H  (91)$ $CI + CI = CO_2 H  (91)$	553
	C₅H₂CI₄	1,2,3,4-Tetrachlorobenzene	BuLi/THF/-70" BuLi/THF/-78°/3 hr CH ₃ Li/THF/-70"	(CH3)3SiCl (CH3)3SnCl (CH3)3SiCl	$\begin{split} X = Si(CH_3)_3  (95) \\ X = Sn(CH_3)_3  (73) \\ Trimethyl(2,3,6-trichlorophenyl)silane  (7), \\ trimethyl(2,3,4,5-tetrachlorophenyl)silane  (93) \end{split}$	264, 554 554 264
		1,2,4,5-Tetrachlorobenzene	BuLi/ether/-65°	CO2	$CI \xrightarrow{CI} CI CI \xrightarrow{X} CI $	553
			2 Buli/THF Buli/THF/78° Buli/THF, ether/	" (CH3)2SiHCI (CH3)3SiCI	(30) (43) $X = CO_2H$ (58) $X = SiH(CH_3)_2$ (24) (56) $X = Si(CH_3)_3$	553 554 554
	С₅Н₃СІ₃	1,3,5-Trichlorobenzene	- /8'/5 hr BuLi/THF/-78° " 3 BuLi/THF/-65° 2 BuLi/THF/-65°/ 0.5 hr	C ₆ H ₅ (CH ₃ ) ₂ SiCl CH ₃ (C ₆ H ₅ ) ₂ SiCl (CH ₃ ) ₃ SnCl (CH ₃ ) ₃ SiCl ''	$() (67) X = Si(CH_3)_2C_6H_5$ $() (62) X = Si(C_8H_3)_2CH_3$ $() (32) X = Sn(CH_3)_3$ $(2,4,6-Trichloro-s-phenenyl)tris[trimethylsilane] (3)$ $(2,4,6-Trichloro-m-phenylene)bis[trimethylsilane]$	554 554 554 8) 555 (44) 555
	C7H3Cl2F3	$G^{\mathbf{CF}_3}$	BuLi/THF/-50°/ 1 hr	CO2	2,6-Dichloro-α,α,α-trifluoro-m-toluic acid (—)	556
7	C7H3CIN	m-CIC ₆ H ₄ CN	LTMP/THF/-70°/ 1 hr	(CH ₃ S) ₂	3-Chloro-2-(methylthio)benzonitrile (30)	24

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Ref
	CH ₃				
C ₂ H ₄ Cl ₂	Qu	BuLi/THF/-50°	C ₆ H ₃ SO ₂ F	(2,6-Dichloro- <i>m</i> -tolyl)phenylsulfone ()	557
	Ċ C.H.	e.	C₀H₅COCI	2,6-Dichloro-3-methylbenzophenone (—)	557
C.H.CINO	Na	BuLi/THF/-70°/ 0.5 hr	I.	X = I (73)	232
	a	44. 10	CO2 CH3I		232 232
C₅HaCl₂O₂	↓ ↓ ↓	BuLi/THF/-50°	C°H²COCI (H²O ₊ )	2,4-Dichloro-3-benzoylbenzaldehyde ()	557
C _s H ₁₁ ClO ₃	CH ₃ O	BuLi/THF/-70°/ 3 min	CO1	2-Chloro-3,5,6-trimethoxybenzoic acid (79), 3-chloro-2,5,6-trimethoxybenzoic acid (16)	222
	OCH3	BuLi/THF/25°/ 10 min	Ac ₂ O	2-Chloro-3,5,6-trimethoxyacetophenone (68)	223
C₁,H₁₄CINO	m-CIC ₀ H4CONHC4H9-f	Buli/THF/-70°	(CH ₃ S) ₂	N-t-Butyl-3-chloro-2-(methylthio)benzamide (31)	24
C34H4CINO2S	SO ₂ C ₆ H ₅	BuLi/ether/-80°/ 24 hr	CO₂	2-Chloro-3-(dimethylamino)-6-(phenylsulfonyl)- benzoic acid (82)	542
C ₁₈ H ₁₈ Cl ₂ O ₂		BuLi/THF/-50*	CO ₂ (H ₃ O*)	2,6-Dichloro-3-benzoylbenzoic acid ()	557
	(CH ₃ ) ₂				

TABLE LIII. ARYL CHLORIDES AND VINYL CHLORIDES (ORTHO, BETA) (Continued)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yi	eld (%)	Refs
	Br					
C ₃ H ₂ BrNS	NS	BuLi/THF/-65% 15 min*	CO2	4-Bromo-5-isoti	hiazolecarboxylic acid (70)	154
	P-		DMF	4-Bromo-5-isot	hiazolecarboxaldehyde (73)	154
C ₃ H ₃ BrN ₂	NN	C ₆ H ₅ Li/ether/25°/ 2 hr	CO2	4-Bromopyrazol	e-5-carboxylic acid (35)	87
C4H2Br2S		LDA/THF or ether/-70°	(CH ₃ ) ₃ SiCl	(2,5-Dibromo-3-	-thienyl)trimethylsilane (—)	246
	Br			Br		
C₄H₃BrO	$\bigcirc$	LDA/THF/-80°/ 2.5 hr	CH ₂ O	( x	X = CH ₂ OH (52)	566
			CH ₃ OCH ₂ Cl		$X = CH_2OCH_3$ (49)	566
		LDA/THF or	(CH ₃ ) ₃ SiCl		$X = Si(CH_3)_3  (-)$	246
		LDA/THF/ -80°/2.5 hr	(CH ₃ ) ₂ C=CHCH ₂ Br		$X = CH_2CH = C(CH_3)_2$ (66)	566
C4H3BrS	KS ^{Br}	C ₆ H ₅ Li/ether/ "overnight"	CO ₂	3-Bromo-2-thiop	ohenecarboxylic acid (72)	48
	CH ₃ Br			CH ₃ Br		
C ₄ H ₄ BrNS	N _S J	BuLi/THF/-65°/ 15 min*	CO ₂	N _S X	$X = CO_2 H$ (56)	154
			CH3I		$X = CH_3$ (40)	154
			DMF		X=CHO (51)	154
			C ₂ H ₅ I*		$X = C_2 H_5$ (34)	154
			C ₆ H ₅ CH ₂ Br		$X = C_3 H_7 - h^{-1} (28)$ $X = C H_2 C_6 H_5 (13)$	154
C ₅ H ₅ BrS	CH ₃ S ^{Br}	LDA/ether/25°	CO2	3-Bromo-5-met acid (56)	hyl-2-thiophenecarboxylic	397
C _B H ₄ Br ₂ S ₂	STATES	EtLi/THF/-70°/ 2 min	CO2	4,4'-Dibromo-[: carboxylic aci	3,3'-bithiophene]-5- id (51)	417
					1 A. A.	

TABLE LIV. ARYL BROMIDES (ORTHO, BETA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs
C ₃ H ₂ INS	A J	BuLi/THF/ -65°/15 min*	DMF	4-Iodo-5-isothiazolecarboxaldehyde (33)	154
C4H3IS	¢۲́	Li/ether, CH ₃ TMEDA/ -10°/0.5 hr	CO2	3-Iodo-2-thiophenecarboxylic acid (80), 4-iodo-2-thiophenecarboxylic acid (20)	68
C₄H₄INS	CH ₃ I	BuLi/THF/ -65°/15 min*	CO2	4-Iodo-3-methyl-5-isothiazolecarboxylic acid (58)	154
		a	DMF	4-Iodo-3-methyl-5-isothiazolecarboxaldehyde (68)	154

TABLE LV. ARYL IODIDES (BETA)

TABLE LVI. (TRIFLUOROMETHYL)BENZENES (ORTHO)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C ₇ H ₅ F ₃	C ₆ H ₅ CF ₃	BuLi	CO ₂ (CH ₂ N ₂ )	Methyl $\alpha, \alpha, \alpha$ -trifluoro- <i>o</i> -toluate (73), methyl $\alpha, \alpha, \alpha$ -trifluoro- <i>m</i> -toluate (26)	50
C ₈ H₄F ₆	m-CF ₃ C ₆ H ₄ CF ₃	BuLi/ether/ 20°/1 hr	CO2	2,4-Bis(trifluoromethyl)benzoic acid (I), 2,6-bis(trifluoromethyl)benzoic acid (II) (I+II, 85) (I:II, 3:2)	49, 267, 268, 269
		BuLi/ether, TMEDA/25°		(II) (30)	558
		BuLi/THF	(CH ₃ ) ₃ SnCl	[2,6-Bis(trifluoromethyl)phenyl] tri- methylstannane (30), [2,4-bis(tri- fluoromethyl)phenyl] trimethyl stannane ()	306
	p-CF3C6H4CF3 CF3	BuLi/ether/25° 1.5 hr	CO2	2,5-Bis(trifluoromethyl)benzoic acid (87)	49, 268, 269
C10H9F6N	(CH ₃ ) ₂ N CF ₃	BuLi/ether, hexane/reflux	CO2	4-(Dimethylamino)-2,6-bis- (trifluoromethyl)benzoic acid (76)	558
C ₁₀ H ₁₂ F ₃ N	m-CF ₃ C ₆ H ₄ CH ₂ - N(CH ₃ ) ₂	BuLi/ether/ 25°/1 hr	(C ₆ H ₅ ) ₂ CO	$[\alpha^{6}$ -(Dimethylamino)- $\alpha^{2}, \alpha^{2}, \alpha^{2}$ -trifluoro- 2,6-xylyl]diphenylmethanol (72)	45

	Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)		Refs
	C₀H₀OPS₂	CS CH3	BuLi/THF/25°/ 1 hr	CO2		X=CO ₂ H (33)	270
		0		CH ₃ COCH ₃		$X = C(CH_3)_2OH$ (40)	27
140	C14H11OPS2	C _S C _s H _s	BuLi/THF/25°/ 1 hr	Br ₂	$\left(\left( \sum_{s} \sum_{x} \right)_{2}^{O} \right)^{PC_{6}H_{5}}$	X=Br (65)	27
			11. 12. 17. 27. 29.	CO2 (CH3)3SiCl CH3COCH3 C6H3CHO C6H3COCH3		$X = CO_{2}H (75)$ $X = Si(CH_{3})_{3} (30)$ $X = C(CH_{3})_{2}OH (45)$ $X = CH(OH)C_{6}H_{5} (70)$ $X = C(OH)C_{6}H_{5} (50)$	270 270 270 270 270
			÷.	(C ₆ H ₅ ) ₂ CO		$CH_3 X = C(C_6H_5)_2OH$ (80)	270
				CH₃CO₂Et	O PC ₆ H ₅ S HO X	X=CH ₃ (35)	27
				CO ₂ C ₂ H	i _s	X= (35)	27
				C ₆ H ₅ CO ₂ C ₂ H ₅ HCO ₂ C ₂ H ₅	s 3-(Phenyl-3-thienylph thiophenecarboxald	$X = C_6 H_5$ (68) osphinyl)-2-	27
		O P(C ₆ H ₅ ) ₂			mophenetarooxan	cinjuc (40)	
	C16H13OPS	$\Box$	BuLi/THF/25°/	CO ₂	3-(Diphenylphosphiny carboxylic acid (3	(l)-2-thiophene-	27
			2	(C ₆ H ₅ ) ₂ CO	3-(Diphenylphosphiny thiophenemethanol	rl)-α,α-diphenyl-2- (50)	27
2		(C ₆ H ₅ ) ₂ P ^{NC₆H₄Br-p}					
	C ₂₄ H ₁₀ BrNP	$\bigcirc$	C ₆ H ₅ Li/ether/ 25°/3 hr	$\mathrm{CO}_2\left(\mathrm{H_3O^+}\right)$	2-(Diphenylphosphiny	vl)benzoic acid (I) (67)	27
				(CH ₃ ) ₃ SiCl	Diphenyl-2-[(trimethy N-(p-bromophenyl)	lsilyl)phenyl]phosphine- imide (50)	27
		(C ₆ H ₅ ) ₂ P ^{NC₆H₅}					
	C. H. NP	$\square$	CeHsLi/ether/	CO ₂ (H ₃ O ⁺ )	(1) (62)		27

TABLE LVII. ARYLPHOSPHINE OXIDES AND IMIDES (ORTHO, BETA)

TABLE LVIII. SELENIDES (ORTHO, BETA)

Formula	Compound Lithiated	Conditions	Substrate	Product and Yield (%)	Refs.
C₃H ₆ SSe	SeCH ₃	BuLi/2 hr	CO2	3-(Methylselenyl)-2-thiophenecarboxylic acid (I), 4-(methylselenyl)-2-thiophene- carboxylic acid (II)	140
C ₈ H ₁₂ SSe	SeC4H9-n	BuLi/2 hr	CO ₂	$(I+II, 75)  (I:II, 56:44)$ $\underbrace{SeC_4H_9-n}_{S \to X}  (III), \qquad (IV)$	
		BuLi/ether/-30°	"S"+CH₃I "Se"+CH₃I	(III+IV, 79) (III:IV, 6:4) $X = CO_2H$ (III:IV, 7:3) $X = SCH_3$ (III+IV, 67) $X = SeCH_3$	140 140 140
C12H8Se	$O_{se}$	BuLi/ether/ reflux	CO ₂	(96)	273

## 8. Acknowledgment

We wish to acknowledge the support of Dr. Neville Finch, whose encouragement and patience with our extensive efforts were indispensable for a timely completion of our endeavors. It is also a privilege to express our thanks to Mrs. Dorothy Alves, Ms. Donna Kreiss, and Ms. Marybeth McAlister for their meticulous typing of a demanding manuscript.

**End** Throughout the text TMEDA is taken to stand for tetramethylethylenediamine.

## Notes

- * The inductive effect of the halogens decreases from fluorine to iodine. (22) Although chlorine is not included in Huisgen's studies, (32) it is arbitrarily put on the same level with the trifluoromethyl group.
- * The use of lithium diisopropylamide gives better results (personal communication from R. A. Lyle, North Texas State University).
- * See Note on page 105.
- * Personal communication from B. M. Trost, University of Wisconsin, Madison, Wisconsin.
- * U.S. suppliers: Aldrich Chemical Co., Alpha Inorganics, Inc., Columbia Organics, Foote Mineral, Lithium Corporation of America, Tridom Chemical, Inc.

In Europe: Fluka Ltd.

- * Lithiation of phenyl vinyl sulfide with lithium diisopropylamide proceeds efficiently under these conditions, but the yields of adducts obtained are variable. The use of *n*-butyllithium/TMEDA appears to give more consistent results.
- * See footnote on p. 98.
- * Under thermodynamic conditions, tertiary amides are more powerful *ortho* directors than sulfonamides and oxazolines (personal communication from P. Beak, University of Illinois, Urbana, Illinois).

- 1. H. Gilman and J. W. Morton, Jr., Org. Reactions, 8, 258 (1954).
- 2. D. W. Slocum and D. I. Sugerman, Adv. Chem. Ser., 130, 222 (1974).
- E. M. Kaiser and D. W. Slocum in Organic Reactive Intermediates, S. P. McManus, Ed., Academic Press, New York, 1973, Chap. "5".
- 4. J. M. Mallan and R. L. Bebb, Chem. Rev., 69, 693 (1969).
- 5. U. Schöllkopf in *Houben-Weyl Methoden der Organischen Chemie*, Vol. **13/1**, Georg Thieme Verlag, Stuttgart, 1970, p. 93.
- 6. B. J. Wakefield, *The Chemistry of Organolithium Compounds*, Pergamon Press, New York, 1974, p. 38.
- 7. D. W. Slocum and B. P. Koonsvitsky, J. Org. Chem., 41, 3664 (1976).
- 8. U. Schöllkopf in *Houben-Weyl Methoden der Organischen Chemie*, Vol. **13/1**, Georg Thieme Verlag, Stuttgart, 1970, p. 7.
- 9. C. T. Viswanathan and C. A. Wilkie, J. Organomet. Chem., 54, 1 (1973).
- 10. T. L. Brown, D. W. Dickerhoof, and D. A. Bafus, J. Am. Chem. Soc., 84, 1371 (1962).
- D. J. Cram, *Fundamentals of Carbanion Chemistry*, Academic Press, New York, 1965.
- 12. K. P. Butin, I. P. Beletskaya, A. N. Kashin, and O. A. Reutov, J. Organomet. Chem., **10**, 197 (1967).
- H. F. Ebel in *Houben-Weyl Methoden der Organischen Chemie*, Vol. 13/1, Georg Thieme Verlag, Stuttgart, 1970, p. 32.
- 14. H. L. Lewis and T. L. Brown, J. Am. Chem. Soc., 92, 4664 (1970).
- 15. F. A. Settle, M. Haggerty, and J. F. Eastham, J. Am. Chem. Soc., **86**, 2076 (1964).
- 16. A. W. Langer, Jr., N. Y. Acad. Sci., 27, 741 (1965).
- 17. D. A. Shirley, T. E. Harmon, and C. F. Cheng, J. Organomet. Chem., **69**, 327 (1974).
- D. A. Shirley, M. J. Danzig, and F. C. Canter, J. Am. Chem. Soc., 75, 3278 (1953).
- 19. D. W. Slocum and C. A. Jennings, J. Org. Chem., 41, 3653 (1976).
- 20. V. Ramanathan and R. Levine, J. Org. Chem., 27, 1667 (1962).
- 21. R. Huisgen, H. König, and N. Bleeker, Chem. Ber., 92, 424 (1959).
- 22. R. Huisgen and J. Sauer, Chem. Ber., 92, 192 (1959).
- 23. H. W. Gschwend, Ciba-Geigy Pharmaceutical Co., Summit, New Jersey, unpublished results.
- 24. H. R. Rodriguez, Ciba-Geigy Pharmaceutical Co., Summit, New Jersey, unpublished results.
- 25. R. Huisgen and J. Sauer, Angew. Chem., 72, 91 (1960).
- 26. M. D. Rausch and D. J. Ciappenelli, J. Organomet. Chem., 10, 127

(1967).

- 27. R. A. Ellison and F. N. Kotsonis, J. Org. Chem., 38, 4192 (1973).
- 28. J. D. Roberts and D. Y. Curtin, J. Am. Chem. Soc., 68, 1658 (1946).
- 29. D. Bryce-Smith, J. Chem., Soc., 1954, 1079.
- 30. F. N. Jones, M. F. Zinn, and C. R. Hauser, J. Org. Chem., **28**, 663 (1963).
- 31. A. I. Shatenshtein, Tetrahedron, **18**, 95 (1962).
- R. Huisgen, W. Mack, K. Herbig, N. Ott, and E. Anneser, Chem. Ber., 93, 412 (1960).
- 33. F. N. Jones, R. L. Vaulx, and C. R. Hauser, J. Org. Chem., 28, 3461 (1963).
- 34. R. A. Ellison and F. N. Kotsonis, Tetrahedron, 29, 805 (1973).
- 35. R. A. Finnegan and J. W. Altschuld, J. Organomet. Chem., **9**, 193 (1967).
- 36. D. A. Shirley and J. P. Hendrix, J. Organomet. Chem., **11**, 217 (1968).
- 37. D. A. Shirley and K. R. Barton, Tetrahedron, 22, 515 (1966).
- 38. S. Gronowitz, Ark. Kemi, 13, 295 (1958) [C.A., 53, 15056d (1959)].
- 39. C. G. Screttas and J. F. Eastham, J. Am. Chem. Soc., 87, 3276 (1965).
- 40. D. J. Chadwick and C. Willbe, J. Chem. Soc., Perkin Trans. I, 1977, 887.
- A. I. Shatenshtein, A. G. Kamrad, I. O. Shapiro, Y. I. Ranneva, and E. N. Zvyagintseva, Dokl. Akad. Nauk. SSSR, **168**, 364 (1966) [C.A., **65**, 8695g (1966)].
- 42. J. A. Elvidge, J. R. Jones, C. O'Brien, E. A. Evans, and H. C. Sheppard, Adv. Heterocycl. Chem., **16**, 1 (1974).
- 43. D. W. Slocum and P. L. Gierer, Chem. Commun., 1971, 305.
- 44. P. Beak and B. Siegel, J. Am. Chem. Soc., 96, 6803 (1974).
- 45. K. P. Klein and C. R. Hauser, J. Org. Chem. 32, 1479 (1967).
- 46. H. W. Gschwend and A. Hamdan, J. Org. Chem., 40, 2008 (1975).
- 47. G. E. Hall, R. Piccolini, and J. D. Roberts, J. Am. Chem. Soc., **77**, 4540 (1955).
- 48. S. Gronowitz, Ark. Kemi, 7, 361 (1954) [C.A., 49, 13216b (1955)].
- 49. K. D. Bartle, G. Hallas, and J. D. Hepworth, Org. Magn. Reson., **5**, 479 (1973).
- 50. D. A. Shirley, J. R. Johnson, Jr., and J. P. Hendrix, J. Organomet. Chem., **11**, 209 (1968).
- 51. B. H. Bhide, Chem. Ind. (London), 1974, 75.
- 52. S. Gronowitz, Adv. Heterocycl. Chem., 1, 73 (1963).
- 53. C. J. Upton and P. Beak, J. Org. Chem., 40, 1094 (1975).
- 54. W. H. Puterbaugh and C. R. Hauser, J. Org. Chem., 29, 853 (1964).

- 55. P. Beak, G. R. Brubaker, and R. F. Farney, J. Am. Chem. Soc., **98**, 3621 (1976).
- 56. P. Beak and R. Brown, J. Org. Chem., 42, 1823 (1977).
- 57a. R. R. Schmidt and J. Talbiersky, Angew. Chem., Int. Ed. Engl., **15**, 171 (1976).
- 57b. R. R. Schmidt and J. Talbiersky, Angew. Chem., Int. Ed. Engl., **17**, 205 (1978).
- 57c. R. R. Schmidt and J. Talbiersky, Angew. Chem., Int. Ed. Engl., **16**, 853 (1977).
- 58. D. A. Shirley and B. J. Reeves, J. Organomet. Chem., 16, 1 (1969).
- 59. D. Seebach, Angew. Chem., Int. Ed. Engl., 8, 639 (1969).
- 60. M. Julia and J. M. Paris, Tetrahedron Lett., 1973, 4833.
- 61. R. L. Letsinger and A. W. Schnizer, J. Org. Chem., 16, 869 (1951).
- 62. T. E. Harmon and D. A. Shirley, J. Org. Chem., 39, 3164 (1974).
- 63. R. E. Ludt, G. P. Crowther, and C. R. Hauser, J. Org. Chem., **35**, 1288 (1970).
- R. L. Vaulx, W. H. Puterbaugh, and C. R. Hauser, J. Org. Chem., 29, 3514 (1964).
- 65. J. J. Fitt and H. W. Gschwend, J. Org. Chem., 41, 4029 (1976).
- 66. H. Watanabe and C. R. Hauser, J. Org. Chem., 33, 4278 (1968).
- R. L. Vaulx, F. N. Jones, and C. R. Hauser, J. Org. Chem., 29, 1387 (1964).
- 68. N. Gjøs and S. Gronowitz, Acta. Chem. Scand., 25, 2596 (1971).
- 69. W. E. Truce and M. F. Amos, J. Am. Chem. Soc., 73, 3013 (1951).
- 70. D. A. Shirley and J. C. Goan, J. Organomet. Chem., 2, 304 (1964).
- 71. R. A. Olofson, J. M. Landesberg, K. N. Houk, and J. S. Michelman, J. Am. Chem. Soc., **88**, 4265 (1966).
- 72. R. A. Coburn, J. M. Landesberg, D. S. Kemp, and R. A. Olofson, Tetrahedron, **26**, 685 (1970).
- 73. A. C. Rochat and R. A. Olofson, Tetrahedron Lett., **1969**, 3377.
- 74. D. M. Stout, T. Takaya, and A. I. Meyers, J. Org. Chem., 40, 563 (1975).
- 75. U. Schöllkopf, Angew. Chem., Int. Ed. Engl., 16, 339 (1977).
- 76. U. Schöllkopf, D. Stafforst, and R. Jentsch, Justus Liebigs Ann. Chem., **1977**, 1167.
- 77. D. Seebach, W. Lubosch, and D. Enders, Chem. Ber., 109, 1309 (1976).
- B. Banhidai and U. Schöllkopf, Angew. Chem., Int. Ed. Engl., **12**, 836 (1973).
- 79. U. Schöllkopf and H. Beckhaus, Angew. Chem., Int. Ed. Engl., **15**, 293 (1976).

- B. Enders and D. Seebach, Angew. Chem., Int. Ed. Engl., **12**, 1014 (1973).
- D. A. Shirley, B. H. Gross, and P. A. Roussel, J. Org. Chem., 20, 225 (1955).
- 82. J. W. F. Wasley, Ciba-Geigy Pharmaceutical Co., Summit, New Jersey, personal communication.
- 83. D. A. Shirley and P. A. Roussel, J. Am. Chem. Soc., 75, 375 (1953).
- 84. R. J. Sundberg and R. L. Parton, J. Org. Chem., 41, 163 (1976).
- 85. R. J. Sundberg and H. R. Russell, J. Org. Chem., 38, 3324 (1973).
- 86. D. E. Butler and S. M. Alexander, J. Org. Chem., 37, 215 (1972).
- 87. R. Hüttel and M. E. Schön, Justus Liebigs Ann. Chem., 625, 55 (1959).
- 88. P. W. Alley and D. A. Shirley, J. Am. Chem. Soc., 80, 6271 (1958).
- 89. A. Marxer and M. Siegrist, Helv. Chem. Acta, 57, 1988 (1974).
- B. A. Tertov, V. V. Burykin, and I. D. Sadekov, Khim Geterotsikl. Soedin., **1969**, 560 [C.A., **71**, 124328y (1969)].
- 91. F. Vinick, Ciba-Geigy Pharmaceutical Co., Summit, New Jersey, unpublished results.
- 92. D. S. Noyce and G. T. Stowe, J. Org. Chem., **38**, 3762 (1973).
- 93. P. Jutzi and W. Sakriss, Chem. Ber., 106, 2815 (1973).
- 94. W. W. Paudler and H. G. Shin, J. Org. Chem., 33, 1638 (1968).
- 95. R. Raap, Can. J. Chem., 49, 1792 (1971).
- 96. H. Behringer and R. Ramert, Justus Liebigs Ann. Chem., **1975**, 1264.
- 97. U. Schöllkopf and I. Hoppe, Justus Liebigs Ann. Chem., 1974, 1655.
- 98. R. Raap, Can. J. Chem., 49, 2139 (1971).
- 99. A. J. Clarke, S. McNamara, and O. Meth-Cohn, Tetrahedron Lett., **1974**, 2373.
- 100. R. G. Jones and H. Gilman, Org. Reactions, 6, 339 (1951).
- 101. R. A. Abramovitch, R. J. Coutts, and E. M. Smith, J. Org. Chem., **37**, 3584 (1972).
- 102. R. A. Abramovitch and E. E. Knaus, J. Heterocycl. Chem., **12**, 683 (1975).
- 103. U. Schöllkopf and P. Hänssle, Justus Liebigs Ann. Chem., **763**, 208 (1972).
- 104. J. E. Baldwin, G. A. Höfle, and O. W. Lever, Jr., J. Am. Chem. Soc., **96**, 7125 (1974).
- 105. C. G. Chavdarian and C. H. Heathcock, J. Am. Chem. Soc., **97**, 3822 (1975).
- 106. R. K. Boeckman, Jr., K. J. Bruza, J. E. Baldwin, and O. W. Lever, Jr., J. Chem. Soc., Chem. Commun., **1975**, 519.

- 107. J. Hartmann, M. Stähle, and M. Schlosser, Synthesis, 1974, 888.
- 108a. S. Hoff. L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, **87**, 916 (1968).
- 108b. J. C. Clinet and G. Linstrumelle, Tetrahedron Lett., 1978, 1137.
- 109. H. A. Selling, J. A. Rompes, P. P. Montijn, S. Hoff. J. H. Van Boom, L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, **88**, 119 (1969).
- 110. R. Mantione, A. Alves, P. P. Montijn, H. J. T. Bos, and L. Brandsma, Tetrahedron Lett., **1969**, 2483.
- 111. R. Mantione and A. Alves, Receuil, 89, 97 (1970).
- 112. V. Ramanathan and R. Levine, J. Org. Chem., 27, 1216 (1962).
- 113. M. C. Fournie-Zaluski and C. Chatain-Cathaud, Bull. Soc. Chim. Fr., **1974**, 1571.
- 114. S. Gronowitz and U. Michael, Ark. Kemi, **32**, 283 (1970) [C.A., **73**, 109824e (1970)].
- 115. D. Florentin, B. P. Roques, and M. C. Fournie-Zaluski, Bull. Soc. Chim. Fr., **1976**, 1999.
- 116. P. Cagniant and G. Kirsch, C. R. Acad. Sci., Paris, Ser, C, **281**, 111 (1975).
- 117. U. Schöllkopf and I. Hoppe, Angew. Chem., Int. Ed. Engl., **14**, 765 (1975).
- 118. R. Schroeder, U. Schöllkopf, E. Blume, and I. Hoppe, Justus Liebigs Ann. Chem., **1975**, 533.
- 119. A. I. Meyers and E. W. Collington, J. Am. Chem. Soc., 92, 6676 (1970).
- 120. U. Schöllkopf, F. Gerhart, I. Hoppe, R. Harms, K. Hantke, K. H. Scheunemann, E. Eilers, and E. Blume, Justus Liebigs Ann. Chem., 1976, 183.
- 121. K. Oshima, K. Shimozi, H. Takahashi, H. Yamamoto, and H. Nozaki, J. Am. Chem. Soc., **95**, 2694 (1973).
- 122. W. E. Parham and R. F. Motter, J. Am. Chem. Soc., 81, 2146 (1959).
- 123. K. Oshima, H. Takahashi, H. Yamamoto, and H. Nozaki, J. Am. Chem. Soc., **95**, 2693 (1973).
- 124. R. C. Cookson and P. J. Parsons, J. Chem. Soc., Chem. Commun., **1976**, 990.
- 125. B. Harirchian and P. Magnus, J. Chem. Soc., Chem. Commun., **1977**, 522.
- 126. R. C. Cookson, University of Southampton, England, personal communication.
- 127. I. Vlattas, L. Della Vecchia, and A. O. Lee, J. Am. Chem. Soc., **98**, 2008 (1976).
- 128. R. R. Schmidt and B. Schmid, Tetrahedron Lett., 1977, 3583.

- 129. W. E. Parham and P. L. Stright, J. Am. Chem. Soc., 78, 4783 (1956).
- 130. A. Schaap, L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, **84**, 1200 (1965).
- 131a. L. Brandsma, C. Jonker, and M. H. Berg, Rec. Trav. Chim. Pays-Bas, 84, 560 (1965).
- 131b. J. H. vanBoom, L. Brandsma, and J. F. Arens, Rec. Trav. Chim. Pays-Bas, **85**, 580 (1966).
- 132. H. Okamura, Y. Mitsuhira, M. Miura, and H. Takei, Chem. Letters, **1978**, 517.
- 133. Y. L. Gol'dfarb and Y. L. Danywshevskii, J. Gen. Chem. (USSR) (Engl. Transl.), **31**, 3410 (1961).
- 134. D. W. Slocum and P. L. Gierer, J. Org. Chem., 41, 3668 (1976).
- 135. D. W. Slocum and P. L. Gierer, J. Org. Chem., 38, 4189 (1973).
- 136. F. M. Stoyanovich and B. P. Fedorov, Khim. Geterotsikl. Soedin., **1967**, 823 [C.A., **69**, 77038a (1968)].
- T. Kauffmann, E. Wienhofer, and A. Wöltermann, Angew. Chem., Int. Ed. Engl., **10**, 741 (1971).
- 138. T. Kauffmann and A. Mitschker, Tetrahedron Lett., **1973**, 4039.
- 139. I. Vlattas and L. Della Vecchia, J. Org. Chem., 42, 2649 (1977).
- 140. Y. L. Gol'dfarb, V. P. Litvinov, and A. Sukiasyan, Izv. Akad. Nauk SSSR, Ser. Khim., **1971**, 1296 [C.A., **75**, 140592t (1971)].
- 141. H. J. Jakobsen and S. O. Lawesson, Tetrahedron, 21, 3331 (1965).
- 142. K. Y. Tserng and L. Bauer, J. Org. Chem., 40, 172 (1975).
- 143. S. Gronowitz and B. Persson, Acta Chem. Scand., 21, 812 (1967).
- 144. F. DeJong and M. J. Janssen, J. Org. Chem., 36, 1645 (1971).
- 145. S. Gronowitz, B. Cederlund, and A. B. Hörnfeldt, Chem. Scr., **5**, 217 (1974) [C.A., **81**, 49013t (1974)].
- 146. N. Gjøs and S. Gronowitz, Ark. Kemi, **30**, 225 (1968) [C.A., **70**, 78043f (1969)].
- 147. J. Z. Mortensen, B. Hedegaard, and S. O. Lawesson, Tetrahedron, **27**, 3839 (1971).
- 148. C. Paulmier, J. Morel, D. Semard, and P. Pastour, Bull. Soc. Chim. Fr., 1973, 2434.
- 149. R. D. Schultz, D. D. Taft, J. P. O'Brien, J. L. Shea, and H. M. Mork, J. Org. Chem., **28**, 1420 (1963).
- 150. W. C. Lumma, G. A. Dutra, and C. A. Voeker, J. Org. Chem., **35**, 3442 (1970).
- 151. R. P. Dickinson and B. Iddon, J. Chem. Soc., C, 1970, 1926.
- 152. H. Gilman and D. L. Esmay, J. Am. Chem. Soc., 76, 5786 (1954).

- T. R. Bosin and R. B. Rogers, J. Labelled Compd., 9, 395 (1973) [C.A., 80, 47761r (1974)].
- 154. M. P. L. Caton, D. H. Jones, R. Slack, and K. R. H. Wooldridge, J. Chem. Soc., **1964**, 446.
- 155. R. G. Micetich, Can. J. Chem., 48, 2006 (1970).
- 156. J. Metzger and B. Koether, Bull. Soc. Chim. Fr., 1953, 708.
- 157. D. S. Noyce and S. A. Fike, J. Org. Chem., 38, 3316 (1973).
- 158. J. Crousier and J. Metzger, Bull. Soc. Chim. Fr., 1967, 4134.
- 159. G. Knaus and A. I. Meyers, J. Org. Chem., 39, 1192 (1974).
- 160. F. H. Pinkerton and S. F. Thames, J. Heterocycl. Chem., 8, 257 (1971).
- 161. M. Sevrin, J. N. Denis, and A. Krief, Angew. Chem., Int. Ed. Engl., **17**, 527 (1978).
- 162. D. C. Green, J. Chem. Soc., Chem. Commun., **1977**, 161.
- 163. Y. K. Yur'ev and N. K. Sadovaya, Zh. Obshch. Khim., 34, 1803 (1964) [C.A., 61, 8258f (1964)].
- 164. F. Fringuelli and A. Taticchi, J. Chem. Soc., Perkin Trans. I, 1972, 199.
- 165. G. Henrio, J. Morel, and P. Pastour, Bull. Soc. Chim. Fr., 1976, 265.
- 166. V. G. Köbrich, A. Akhtar, F. Ansari, W. E. Breckoff, H. Büttner, W. Drischel, R. H. Fischer, K. Flory, H. Fröhlich, W. Goyert, H. Heinemann, I. Hornke, H. R. Merkle, H. Trapp, and W. Zündorf, Angew. Chem., Int. Ed. Engl., 6, 41 (1967).
- 167. G. Köbrich and K. Flory, Chem. Ber., 99, 1773 (1966).
- 168. G. Köbrich and K. Flory, Tetrahedron Lett., 1964, 1137.
- 169. M. Schlosser and V. Ladenberger, Chem. Ber., 100, 3893 (1967).
- 170. G. Köbrich, H. Trapp, and I. Hornke, Tetrahedron Lett., 1964, 1131.
- 171. G. Köbrich and H. Trapp, Chem. Ber., 99, 680 (1966).
- 172. F. G. Drakesmith, R. D. Richardson, O. J. Stewart, and P. Tarrant, J. Org. Chem., **33**, 286 (1968).
- 173. F. G. Drakesmith, O. J. Stewart, and P. Tarrant, J. Org. Chem., **33**, 472 (1968).
- 174a. J. Ficini and J. C. Depezay, Tetrahedron Lett., 1968, 937.
- 174b. K. S. Y. Lau and M. Schlosser, J. Org. Chem., 43, 1595 (1978).
- 175. D. W. Slocum and W. Ackermann, Chem. Commun., **1974**, 968.
- 176. D. A. Shirley and J. C. Liu, J. Org. Chem., 25, 1189 (1960).
- 177. G. Cauquil, A. Casadevall, and E. Casadevall, Bull. Soc. Chim. Fr., **1960**, 1049.
- 178. R. D. Nelson, Iowa State Coll. J. Sci., **27**, 229 (1953) [C.A., **48**, 2069e (1954)].
- 179. A. R. Lepley, W. A. Khan, A. B. Giumanini, and A. G. Giumanini, J. Org.

Chem., 31, 2047 (1966).

- 180. D. W. Slocum, G. Bock, and C. A. Jennings, Tetrahedron Lett., **1970**, 3443.
- 181a. W. Fuhrer and H. W. Gschwend, J. Org. Chem., 44, 1133 (1979).
- 181b. N. S. Narasimhan and A. C. Ranade, Indian J. Chem., 7, 538 (1969).
- 182. D. A. Shirley and J. C. Gilmer, J. Org. Chem., 27, 4421 (1962).
- 183a. G. Cauquil, M. A. Casadevall, and E. Casadevall, C. R. Acad. Sci. Paris, Ser. C, 243, 590 (1956).
- 183b. D. A. Shirley and W. E. Tatum, J. Org. Chem., 25, 2238 (1960).
- 184. H. M. Walborsky and P. Ronman, J. Org. Chem., 43, 731 (1978).
- 185. Z. Horii, Y. Matsumoto, and T. Momose, Chem. Pharm. Bull. (Tokyo), **19**, 1245 (1971).
- 186. J. Garner, G. A. Howarth, W. Hoyle, S. M. Roberts, and H. Suschitzky, J. Chem. Soc., Perkin Trans. I, **1976**, 994.
- 187. R. Coombs, W. J. Houlihan, J. Nadelson, and E. I. Takesue, J. Med. Chem., **14**, 1072 (1971).
- 188. R. E. Ludt and C. R. Hauser, J. Org. Chem., 36, 1607 (1971).
- 189. N. S. Narasimhan and B. H. Bhide, Tetrahedron Lett., 1968, 4159.
- 190. G. Van Koten, A. J. Leusink, and J. G. Noltes, J. Organomet. Chem., **84**, 117 (1975).
- 191. R. L. Gay and C. R. Hauser, J. Am. Chem. Soc., 89, 2297 (1967).
- 192. D. A. Shirley and C. F. Cheng, J. Organomet. Chem., 20, 251 (1969).
- 193. N. S. Narasimhan and A. C. Ranade, Tetrahedron Lett., 1966, 603.
- 194. D. W. Slocum, T. R. Engelmann, and C. A. Jennings, Aust. J. Chem., **21**, 2319 (1968).
- 195. R. L. Vaulx, F. N. Jones, and C. R. Hauser, J. Org. Chem. 30, 58 (1965).
- 196. L. Barsky, H. W. Gschwend, J. McKenna, and H. R. Rodriguez, J. Org. Chem., **41**, 3651 (1976).
- 197. M. J. Jorgenson, Org. Reactions, 18, 1 (1970).
- 198. C. L. Mao, I. T. Barnish, and C. R. Hauser, J. Heterocycl. Chem., **6**, 475 (1969).
- 199. Sandoz-Wander Inc., U.S. Pat. 3,878,215 (1975) [C.A., **83**, 79099j (1975)].
- 200. A. Marxer, H. R. Rodriguez, J. M. McKenna, and H. M. Tsai, J. Org. Chem., **40**, 1427 (1975).
- 201. H. Watanabe, C. L. Mao, I. T. Barnish, and C. R. Hauser, J. Org. Chem., **34**, 919 (1969).
- 202. N. S. Narasimhan and R. S. Mali, Chem. Ind. (London), **1975**, 519.
- 203. M. I. Bruce, Angew. Chem., Int. Ed. Engl., 16, 73 (1977).

- 204. A. I. Meyers and E. D. Mihelich, J. Org. Chem., 40, 3158 (1975).
- 205. A. Padwa, A. Ku, A. Mazzu, and S. I. Wetmore, Jr., J. Am. Chem. Soc., **98**, 1048 (1976).
- 206. A. I. Meyers and E. D. Mihelich, Angew. Chem., Int. Ed. Engl., **15**, 270 (1976).
- 207. A. I. Meyers and R. A. Gabel, Tetrahedron Lett., 1978, 227.
- 208a. A. I. Meyers and E. D. Mihelich, J. Am. Chem. Soc., 97, 7383 (1975).
- 208b. A. I. Meyers, R. Gabel, and E. D. Mihelich, J. Org. Chem., **43**, 1372 (1978).
- 208c. A. I. Meyers and B. E. Williams, Tetrahedron Lett., 1978, 223.
- 208d. T. D. Harris, B. Neuschwander, and V. Boekelheide, J. Org. Chem., **43**, 727 (1978).
- 209. G. Stork and S. R. Dowd, J. Am. Chem. Soc., 85, 2178 (1963).
- 210. G. Wittig, H. D. Frommeld, and P. Suchanek, Angew. Chem., Int. Ed. Engl., **2**, 683 (1963).
- 211. G. Wittig and H. Reiff, Angew. Chem., Int. Ed. Engl., 7, 7 (1968).
- 212. F. E. Ziegler and K. W. Fowler, J. Org. Chem., 41, 1564 (1976).
- 213. J. Epsztajn, A. Bieniek, and J. Z. Brzezinski, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 23, 917 (1975) [C.A., 85, 46792t (1976)].
- 214. J. Epsztajn, W. E. Hahn, and J. Z. Brzezinski, Rocz. Chem., 49, 123 (1975) [C.A., 83, 58604e (1975)].
- 215. C. Osuch and R. Levine, J. Am. Chem. Soc., 78, 1723 (1956).
- 216. W. J. Houlihan, U.S. Pat. 3,932,450 (1976) [C.A. 84, 135662x (1976)].
- 217. S. Gronowitz and B. Eriksson, Ark. Kemi, **21**, 335 (1963) [C.A., **59**, 13918f (1963)].
- 218. R. R. Schmidt and G. Berger, Chem. Ber., **109**, 2936 (1976).
- 219. H. Lettré and A. Jahn, Chem. Ber., 85, 346 (1952).
- 220. G. I. Feutrill, R. N. Mirrington, and R. J. Nichols, Aust. J. Chem., **26**, 345 (1973).
- 221. K. Yamada, H. Yazawa, D. Uemura, M. Toda, and Y. Hirata, Tetrahedron, **25**, 3509 (1969).
- 222. W. Schäfer and R. Leute, Chem. Ber., 99, 1632 (1966).
- 223. W. Schäfer, R. Leute, and H. Schlude, Chem. Ber., 104, 3211 (1971).
- 224. G. Schill and E. Logemann, Chem. Ber., 106, 2910 (1973).
- 225. H. Christensen, Synth. Commun., 4, 1 (1974).
- 226. R. A. Barnes and L. J. Nehmsmann, J. Org. Chem., 27, 1939 (1962).
- 227. B. M. Graybill and D. A. Shirley, J. Org. Chem., **31**, 1221 (1966).
- 228. J. Klein and A. Medlik-Balan, J. Org. Chem., 41, 3307 (1976).
- 229. N. S. Narasimhan and R. S. Mali, Tetrahedron, **31**, 1005 (1975).

- 230. N. S. Narasimhan and M. V. Paradkar, Indian J. Chem., 7, 536 (1969).
- 231. J. Sicé, J. Am. Chem. Soc., 75, 3697 (1953).
- 232. R. G. Micetich and C. G. Chin, Can. J. Chem., 48, 1371 (1970).
- 233. L. Santucci and H. Gilman, J. Am. Chem. Soc., 80, 4537 (1958).
- 234. H. Christensen, Synth. Commun., 5, 65 (1975).
- 235. R. Stern, J. English, Jr., and H. G. Cassidy, J. Am. Chem. Soc., **79**, 5797 (1957).
- 236. H. Gilman and S. H. Eidt, J. Am. Chem. Soc., 78, 2633 (1956).
- 237. S. H. Eidt, Iowa State Coll. J. Sci., **31**, 397 (1957) [C.A., **51**, 14729i (1957)].
- 238. H. Gilman and L. O. Moore, J. Am. Chem. Soc., 80, 2195 (1958).
- 239. K. Oita and H. Gilman, J. Am. Chem. Soc., 79, 339 (1957).
- 240. H. Gilman and W. J. Trepka, J. Org. Chem., 26, 5202 (1961).
- 241. H. Gilman and W. J. Trepka, J. Org. Chem., 27, 1418 (1962).
- 242. H. Gilman and D. Miles, J. Org. Chem., 23, 1363 (1958).
- 243. K. Oita and H. Gilman, J. Org. Chem., 21, 1009 (1956).
- 244a. G. Wittig, P. Davis, and G. Koenig, Chem. Ber., 84, 627 (1951).
- 244b. N. Meyer and D. Seebach, Angew. Chem., Int. Ed. Engl., **17**, 522 (1978).
- 245. M. Uemura, S. Tokuyama, and T. Sakan, Chem. Lett., 1975, 1195.
- 246. G. M. Davies and P. S. Davies, Tetrahedron Lett., 1972, 3507.
- 247. E. J. Corey and D. Seebach, J. Org. Chem., 31, 4097 (1966).
- 248. S. Gronowitz, Ark. Kemi, 13, 269 (1958) [C.A., 53, 15056e (1959)].
- 249. E. B. McCall, A. J. Neale, and T. J. Rawlings, J. Chem. Soc., **1962**, 4900.
- 250. H. Gilman and D. R. Swayampati, J. Am. Chem. Soc., 79, 208 (1957).
- 251. C. Eaborn and J. A. Sperry, J. Chem. Soc., 1961, 4921.
- 252. F. D. Bailey and R. Taylor, J. Chem. Soc., B, 1971, 1446.
- 253. F. M. Stoyanovich, R. G. Karpenko, and Y. L. Gol'dfarb, Tetrahedron, **27**, 433 (1971).
- 254. H. Watanabe, R. A. Schwarz, C. R. Hauser, J. Lewis, and D. W. Slocum, Can. J. Chem., **47**, 1543 (1969).
- 255. J. G. Lombardino, J. Org. Chem., 36, 1843 (1971).
- 256. S. J. Shafer and W. D. Closson, J. Org. Chem., 40, 889 (1975).
- 257. D. Hellwinkel and M. Supp, Tetrahedron Lett., 1975, 1499.
- 258. D. Hellwinkel and M. Supp, Angew. Chem., Int. Ed. Engl., **13**, 270 (1974).
- 259. D. Hellwinkel and M. Supp, Chem. Ber., **109**, 3749 (1976).

- 260. H. Gilman and T. S. Soddy, J. Org. Chem., 22, 1715 (1957).
- 261. T. H. Kinstle and J. P. Bechner, J. Organomet. Chem., 22, 497 (1970).
- 262. C. Tamborski and E. J. Soloski, J. Organomet. Chem., 17, 185 (1969).
- 263. S. F. Campbell, R. Stephens, and J. C. Tatlow, Chem. Commun., **1967**, 151.
- 264. I. Haiduc and H. Gilman, Chem. Ind. (London), **1968**, 1278.
- 265. N. J. Foulger and B. J. Wakefield, J. Organomet. Chem., 69, 161 (1974).
- 266. M. Schlosser, B. Schaub, B. Spahic, and G. Sleiter, Helv. Chim. Acta, **56**, 2166 (1973).
- 267. P. Aeberli and W. J. Houlihan, J. Organomet. Chem., 67, 321 (1974).
- 268. W. J. Houlihan, U.S. Pat. 3,751,491 (1973) [C.A., 79, 91787g (1973)].
- 269. W. J. Houlihan, U.S. Pat. 3,825,594 (1974) [C.A., 81, 91232p (1974)].
- 270. J. P. Lampin and F. Mathey, J. Organomet. Chem., 71, 239 (1974).
- 271. C. G. Stuckwisch, J. Org. Chem., 41, 1173 (1976).
- 272. D. J. Peterson and J. H. Collins, J. Org. Chem., 31, 2373 (1966).
- 273. W. J. Burlant and E. S. Gould, J. Am. Chem. Soc., 76, 5775 (1954).
- 274. E. N. Karaulova, D. S. Meilanova, and G. D. Gal'pern, Dokl. Akad. Nauk SSSR, **123**, 99 (1958) [C.A., **53**, 5229f (1959)].
- 275. H. J. Jakobsen, E. H. Larsen, and S. O. Lawesson, Tetrahedron, **19**, 1867 (1963).
- 276. J. D. Buhler. J. Org. Chem., 38, 904 (1973).
- 277. C. Tamborski and E. J. Soloski, J. Org. Chem., 31, 743 (1966).
- 278. M. B. Groen, H. Schadenberg, and H. Wynberg, J. Org. Chem., **36**, 2797 (1971).
- 279. D. A. Shirley and M. D. Cameron, J. Am. Chem. Soc., 74, 664 (1952).
- 280. A. Mitschker, U. Brandl, and T. Kauffmann, Tetrahedron Lett., **1974**, 2343.
- 281. D. A. Shirley and M. D. Cameron, J. Am. Chem. Soc., 72, 2788 (1949).
- 282. T. Kauffmann, B. Muke, R. Otter, and D. Tigler, Angew. Chem., Int. Ed. Engl., **14**, 714 (1975).
- 283. C. Paulmier, J. Morel, and P. Pastour, Bull. Soc. Chim. Fr., 1969, 2511.
- 284. T. Kametani, H. Nemoto, M. Takeuchi, S. Hibino, and K. Fukumoto, Chem. Pharm. Bull. (Tokyo), **24**, 1354 (1976).
- 285. T. Severin, D. Scheel, and P. Adhikary, Chem. Ber., **102**, 2966 (1969).
- 286. H. Gilman and R. K. Ingham, J. Am. Chem. Soc., 75, 4843 (1953).
- 287. B. A. Tertov, V. V. Burykin, and A. V. Koblik, Khim. Geterotsikl. Soedin., 1972, 1552. [C.A. 78, 58308h (1973)].
- 288. H. Gilman and D. L. Esmay, J. Am. Chem. Soc., 76, 5787 (1954).

- 289. A. B. Hörnfeldt and S. Gronowitz, Ark. Kemi, **21**, 239 (1963) [C.A., **59**, 13917b (1963)].
- 290. Y. L. Gol'dfarb, M. A. Kalik, and M. L. Kirmalova, Izv. Akad. Nauk SSSR, Ser. Khim., **1964**, 1675 [C.A., **61**, 16032c (1964)].
- 291. S. Gronowitz and T. Frejd, Acta Chem. Scand., Ser. B, **30**, 439 (1976).
- 292. E. Niwa, H. Aoki, H. Tanaka, K. Munakata, and M. Namiki, Chem. Ber., **99**, 3215 (1966).
- 293. R. L. Gay, T. F. Crimmins, and C. R. Hauser, Chem. Ind. (London), **1966**, 1635.
- 294. P. Jordens, G. Rawson, and H. Wynberg, J. Chem. Soc., C, **1970**, 273.
- 295. B. Wrackmeyer and H. Nöth, Chem. Ber., 109, 1075 (1976).
- 296. E. Niwa, H. Aoki, H. Tanaka, and K. Munakata, Chem. Ber., **99**, 712 (1966).
- 297. S. F. Thames and H. C. Odom, Jr., J. Heterocycl. Chem., 3, 490 (1966).
- 298. S. F. Thames and J. E. McCleskey, J. Heterocycl. Chem., 4, 146 (1967).
- 299. I. Rhee, Y. Hirota, M. Ryang, and S. Tsutsumi, Bull. Chem. Soc. Jpn., 43, 947 (1970).
- 300. A. C. Cope and R. N. Gourley, J. Organomet. Chem., 8, 527 (1967).
- 301. L. L. Garber and C. H. Brubaker, Jr., J. Am. Chem. Soc., 90, 309 (1968).
- 302. G. H. Posner, Org. Reactions, **19**, 1 (1972).
- 303. G. Longini, P. Fantucci, P. Chini, and F. Canziani, J. Organomet. Chem., 39, 413 (1972).
- 304. A. J. Leusink, G. Van Koten, and J. G. Noltes, J. Organomet. Chem., **56**, 379 (1973).
- 305. A. J. Leusink, G. Van Koten, J. W. Marsman, and J. G. Noltes, J. Organomet. Chem., **55**, 419 (1973).
- 306. H. J. Kroth, H. Schumann, H. G. Kuivila, C. D. Schaeffer, and J. J. Zuckerman, J. Am. Chem. Soc., **97**, 1754 (1975).
- 307. G. Van Koten and J. G. Noltes, J. Am. Chem. Soc., 98, 5393 (1976).
- 308. W. J. Houlihan, U.S. Pat. 3,932,450 (1976) [C.A., 84, 135662x (1976)].
- 309. G. A. Olah, Acc. Chem. Res., 4, 240 (1971).
- 310. D. E. Pearson and C. A. Buehler, Synthesis, **1971**, 455.
- 311. S. J. Rhoads and N. R. Raulins, Org. Reactions, 22, 1 (1974).
- 312. J. F. Bunnett and R. E. Zahler, Chem. Rev., 49, 273 (1951).
- 313. N. P. Buu-Ho I, Justus Liebigs Ann. Chem., 556, 1 (1944).
- 314. K. H. Boltze and H. D. Dell, Justus Liebigs Ann. Chem., 709, 63 (1967).
- 315. B. Jones, J. Chem. Soc., 1941, 267.
- 316. P. L. Letsinger, J. A. Gilpin, and W. J. Vullo, J. Org. Chem., **27**, 672 (1962).

- 317. A. I. Meyers, D. L. Temple, D. Haidukewych, and E. D. Mihelich, J. Org. Chem., **39**, 2787 (1974).
- 318. W. E. Parham and Y. A. Sayed, J. Org. Chem., 39, 2051 (1974).
- 319. W. E. Parham and D. C. Egberg, J. Org. Chem., 37, 1545 (1972).
- 320. D. Seyferth and M. A. Weiner, J. Am. Chem., Soc., 83, 3583 (1961).
- 321. E. J. Corey and R. H. Wollenberg, J. Org. Chem., 40, 2265 (1975).
- 322. R. H. Wollenberg, K. Albizati, and R. Peries, J. Am. Chem. Soc., **99**, 7365 (1977).
- 323. W. E. Parham and Y. A. Sayed, J. Org. Chem., 39, 2053 (1974).
- 324. W. E. Parham and L. D. Jones, J. Org. Chem., 41, 1187 (1976).
- 325. H. P. Abicht and K. Issleib, Z. Chem., 17, 1 (1977).
- 326. E. C. Taylor and A. McKillop, Acc. Chem. Res., 3, 338 (1970).
- 327. J. Dehard and M. Pfeffer, Coord. Chem. Rev., 18, 327 (1976).
- 328. G. W. Parshall, Acc. Chem. Res., 3, 139 (1970).
- 329. W. Kitching, Organomet. Chem. Rev., 3, 35 (1968).
- 330. G. Marino, Adv. Heterocycl. Chem. 13, 235 (1971).
- 331. R. Slack and K. R. H. Woolridge, Adv. Heterocycl. Chem., 4, 107 (1965).
- 332. E. S. Schipper and A. R. Day, Heterocycl. Compd., 5, 194 (1957).
- 333. R. Lakhan and B. Ternai, Adv. Heterocycl. Chem., 17, 100 (1974).
- 334. J. M. Sprague and A. H. Land, Heterocycl. Compd., 5, 484 (1957).
- 335. T. L. Gilchrist and G. E. Gymer, Adv. Heterocycl. Chem., 16, 33 (1974).
- 336. W. A. Remers, Heterocycl. Compd., 25, 70 (1972).
- 337. D. Seebach, Synthesis, 1969, 17.
- 338. O. W. Lever, Jr., Tetrahedron, 32, 1943 (1976).
- 339. E. J. Corey and D. Seebach, Angew. Chem., Int. Ed. Engl., **4**, 1075 (1965).
- 340. M. Roth, P. Dubs, E. Götschi, and A. Eschenmoser, Helv. Chim. Acta, 54, 710 (1971).
- 341. A. I. Meyers and E. M. Smith, J. Org. Chem., 37, 4289 (1972).
- 342. I. C. Nordin, J. Heterocycl. Chem., 3, 531 (1966).
- 343. A. I. Meyers, A. Nabeya, H. W. Adickes, I. R. Politzer, G. R. Malone, A. C. Kovelesky, R. L. Nolen, and R. C. Portnoy, J. Org. Chem., 38, 36 (1973).
- 344. I. T. Barnish and C. R. Hauser, J. Org. Chem., 33, 1372 (1968).
- 345. A. G. Davies, Ann. Rep. Prog. Chem., Sec. B, **64**, 219 (1967) [C.A., **70**, 96836w (1969)].
- 346. W. G. Kofron and L. M. Baclawski, J. Org. Chem., 41, 1879 (1976).
- 347. S. C. Watson and J. F. Eastham, J. Organomet. Chem., 9, 165 (1967).

- 348. M. Schlosser, J. Organomet. Chem., 8, 9 (1967).
- 349. R. B. Bates, L. M. Kroposki, and D. E. Potter, J. Org. Chem., 37, 560 (1972).
- 350. H. Gilman and G. L. Schwebke, J. Organomet. Chem., 4, 483 (1965).
- 351. S. C. Honeycutt, J. Organomet. Chem., 29, 1 (1971).
- 352. M. E. Jung and R. B. Blum, Tetrahedron Lett., 1977, 3791.
- 353. A. Maercker and W. Theysohn, Justus Liebigs Ann. Chem., **747**, 70 (1971).
- 354. H. Gilman and B. J. Gaj, J. Org. Chem., 22, 1165 (1957).
- 355. E. B. Pedersen, J. Chem. Soc., Perkin Trans. II, 1977, 473.
- 356. J. E. Baldwin, O. W. Lever, Jr., and N. R. Tzodikov, J. Org. Chem., **41**, 2312 (1976).
- 357. E. Jones and I. M. Moodie, Org. Syntheses, 50, 104 (1970).
- 358. G. Köbrich and H. Trapp, Chem. Ber., 99, 670 (1966).
- 359. J. V. Hay and T. M. Harris, Org. Syntheses, 53, 56 (1973).

## References to Tables I–LVIII

- 360. Y. Leroux and C. Roman, Tetrahedron Lett., 1973, 2585.
- 361. Y. L. Gol'dfarb, Y. L. Danyushevskii, and M. A. Vinogradova, Dokl. Akad. Nauk SSSR, **151**, 332 (1963) [C.A., **59**, 8681c (1963)].
- 362. Y. L. Gol'dfarb and V. P. Litvinov, Izv. Akad. Nauk SSSR, Ser. Khim., 1964, 2088 [C.A., 62, 9090f (1965)].
- 363. W. E. Truce and E. Wellisch, J. Am. Chem. Soc., 74, 5177 (1952).
- 364. K. Okuhara, J. Org. Chem., 41, 1487 (1976).
- 365. S. Gronowitz, A. B. Hörnfeldt, and K. Pettersson, Synth. Commun., **1973**, 213.
- 366. D. J. Chadwick, J. Chambers, G. Meakins, and R. L. Snowden, J. Chem. Soc., Perkin Trans. I, 1975, 523.
- 367. M. J. Arco, M. H. Trammell, and J. D. White, J. Org. Chem., **41**, 2075 (1976).
- 368. J. Gombos, E. Haslinger, H. Zak, and U. Schmidt, Monatsh. Chem., 106, 219 (1975).
- 369. R. A. Benkeser and R. B. Currie, J. Am. Chem. Soc., 70, 1780 (1948).
- 370. H. Bredereck and R. Gompper, Angew. Chem., 70, 571 (1958).
- 371. Y. L. Gol'dfarb and Y. L. Danyushevskii, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, **1963**, 540 [C.A., **59**, 3861a (1963)].
- 372. Y. A. Zhdanov, V. G. Alekseeva, and E. L. Korol, Dokl. Akad. Nauk SSSR, **225**, 1336 (1975) [C.A., **84**, 150848f (1976)].
- 373. G. R. Ziegler and G. S. Hammond, J. Am. Chem. Soc., 90, 513 (1968).

- 374. S. Gronowitz and B. Holm, Synth. Commun., 4, 63 (1974).
- 375. A. V. Koblik, T. I. Polyakova, B. A. Tertov, B. V. Mezhov, and G. N. Dorofeenko, Zh. Org. Khim., **11**, 2153 (1975) [C.A., **84**, 43782h (1976)].
- 376. M. C. Zalushi, M. Robba, and M. Bonhomme, Bull. Soc. Chim. Fr., **1970**, 1838.
- 377. I. Vlattas, Ciba-Geigy Pharmaceutical Co., Summit, New Jersey, personal communication.
- 378. V. G. Kul'nevich, Z. I. Zelikman, A. Shkrebets, B. A. Tertov, and M. M. Ketslakh, Khim. Geterotsikl. Soedin., **1973**, 595 [C.A., **79**, 42424e (1973)].
- 379. P. Pastour and C. Plantard, C.R. Acad. Sci., Paris, Ser. C, 262, 1539 (1966).
- 380. E. N. Givens, L. G. Alexakos, and P. B. Venuto, Tetrahedron, **25**, 2407 (1969).
- 381. S. Gronowitz and B. Uppström, Acta Chem. Scand., B29, 441 (1975).
- 382. T. A. Dobson and L. G. Humber, J. Heterocycl. Chem., 12, 591 (1975).
- 383. D. Hoppe, Angew. Chem., Int. Ed. Engl., 13, 789 (1974).
- 384. R. Muthukrishnan and M. Schlosser, Helv. Chim. Acta, 59, 13 (1976).
- 385. S. Gronowitz and U. Rosen, Chem. Scr., **1**, 33 (1971) [C.A., **75**, 20080e (1971)].
- 386. S. Gronowitz and K. Halvarson, Ark. Kemi, **8**, 343 (1955) [C.A., **49**, 10921f (1955)].
- 387. S. Gronowitz and P. Moses, Acta Chem. Scand., 16, 155 (1960).
- 388. Y. L. Gol'dfarb, V. P. Litvinov, and S. A. Ozolin, Izv. Akad. Nauk SSSR, Ser. Khim., **1966**, 1432 [C.A., **66**, 65409x (1967)].
- 389. Y. L. Gol'dfarb and M. L. Kirmalova, J. Gen. Chem. (USSR) (Engl. Transl.), **25**, 1321 (1955) [C.A., **50**, 6422h (1956).]
- 390. Y. L. Gol'dfarb, B. P. Fabrichnyi, and V. I. Rogovik, Izv. Akad. Nauk SSSR, Ser. Khim., **1965**, 515 [C.A., **63**, 562f (1965)].
- 391. S. Gronowitz and J. Röe, Acta Chem. Scand., 19, 1741 (1965).
- 392. P. L. Kelly, S. F. Thames, and J. E. McCleskey, J. Heterocycl. Chem., **9**, 141 (1972).
- 393. S. Gronowitz and R. Hakansson, Ark. Kemi, **17**, 73 (1960) [C.A., **56**, 3497g (1962)].
- 394. S. Gronowitz and B. Holm, Chem. Scr., **2**, 245 (1972) [C.A., **78**, 84156b (1973)].
- 395. D. W. Adamson, J. Chem. Soc., 1950, 885.
- 396. P. Dubus, B. Decroix, J. Morel, and P. Pastour, Bull. Soc. Chim. Fr., **1976**, 628.
- 397. S. Gronowitz and T. Frejd, Acta Chem. Scand., B30, 485 (1976).

- 398. W. R. Biggerstaff, H. Arzoumanian, and K. L. Stevens, J. Med. Chem., 7, 110 (1964).
- 399. S. Gronowitz, P. Moses, A. B. Hörnfeldt, and R. Hakansson, Ark. Kemi, 17, 165 (1961) [C.A., 57, 8528h (1962)].
- 400. W. R. Biggerstaff and K. L. Stevens, J. Org. Chem., 28, 733 (1963).
- 401. J. Pankiewicz, B. Decroix, and J. Morel, C. R. Acad. Sci., Paris, Ser. C, **281**, 39 (1975).
- 402. S. Gronowitz, Ark. Kemi, 12, 239 (1958) [C.A., 52, 20115d (1958)].
- 403. Y. L. Gol'dfarb, M. L. Kirmalova, and M. A. Kalik, Zh. Obshch. Khim., 29, 2034 (1959) [C.A., 54, 8775h (1960)].
- 404. Y. L. Gol'dfarb, M. A. Kalik, and M. L. Kirmalova, Zh. Obsch. Khim., **29**, 3631 (1959) [C.A., **54**, 19638h (1960)].
- 405. S. Gronowitz and B. Gestblom, Ark. Kemi, **18**, 513 (1962) [C.A., **57**, 3000c (1962)].
- 406. E. Wiklund and R. Hakansson, Chem. Scr., **3**, 220 (1973) [C.A., **79**, 79495r (1973)].
- 407. J. Sicé, J. Org. Chem., 19, 70 (1954).
- 408. Y. L. Gol'dfarb, M. A. Kalik, and M. L. Kirmalova, Metody Poluch. Khim. Reakt. Prep., 14, 156 (1966) [C.A., 67, 11380h (1967)].
- 409. A. Wiersema and S. Gronowitz, Acta Chem. Scand., 24, 2593 (1970).
- 410. J. Skramstad, Chem. Scr., 4, 81 (1973) [C.A., 79, 77884e (1973)].
- 411. A. Bugge, Acta Chem. Scand., 23, 1823 (1969).
- 412. S. Gronowitz, B. Gestblom, and B. Mathiasson, Ark. Kemi, **20**, 407 (1963) [C.A., **59**, 7459b (1963)].
- 413. P. Pirson, A. Schonne, and L. Christiaens, Bull. Soc. Chim. Belg., **79**, 575 (1970).
- 414. U. Michael and S. Gronowitz, Acta Chem. Scand., 22, 1353 (1968).
- 415. Y. L. Gol'dfarb, G. I. Gorushkina, and B. P. Federov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, **1959**, 2021 [C.A., **54**, 9879b (1960)].
- 416. R. T. Hawkins and D. B. Stroup, J. Org. Chem., 34, 1173 (1969).
- 417. R. Hakansson, Acta Chem. Scand., 25, 1313 (1971).
- 418. H. Wynberg and A. Bantjes, J. Am. Chem. Soc., 82, 1447 (1960).
- 419. S. Gronowitz and V. Vilks, Ark. Kemi, **21**, 191 (1963) [C.A., **59**, 13919g (1963)].
- 420. Y. L. Gol'dfarb, S. Ozolins, and V. P. Litvinov, Zh. Obshch. Khim., **37**, 2220 (1967) [C.A., **68**, 87218c (1968)].
- 421. S. F. Thames and J. E. McCleskey, J. Heterocycl. Chem., 3, 104 (1966).
- 422. V. P. Litvinov, T. Shchedrinskaya, P. A. Konstantinov, and Y. L. Gol'dfarb, Khim. Geterotsikl. Soedin., **1975**, 492 [C.A., **83**, 27273s

(1975)].

- 423. S. Gronowitz, Ark. Kemi, 16, 363 (1960) [C.A., 55, 21092f (1961)].
- 424. Y. A. Gol'dfarb, F. M. Stoyanovich, and G. B. Chermanova, Izv. Akad. Nauk SSSR, Ser. Khim., **1973**, 2290 [C.A., **80**, 47743n (1974)].
- 425. Y. L. Gol'dfarb, B. P. Fabrichnyi, and V. I. Rogovik, Izv. Akad. Nauk SSSR, Ser. Khim., **1963**, 2172 [C.A., **60**, 9227b (1964)].
- 426. Y. L. Gol'dfarb, B. P. Fabrichniyi, and V. I. Rogovik, Izv. Akad. Nauk SSSR, Ser. Khim., **1963**, 2178 [C.A., **60**, 9226g (1964)].
- 427. Y. L. Gol'dfarb, S. Ozolins, and V. P. Litvinov, Khim. Geterotsikl. Soedin., **1967**, 935 [C.A., **69**, 2883p (1968)].
- 428. P. Pastour, P. Savalle, and P. Eymery, C. R. Acad. Sci., Paris, Ser. C, **260**, 6130 (1965).
- 429. R. Leardini, G. Martelli, P. Spagnolo, and M. Tiecco, J. Chem. Soc., C, **1970**, 1464.
- 430. S. Gronowitz and H. Frostling, Acta Chem. Scand., 16, 1127 (1962).
- 431. S. Gronowitz and H. Frostling, Tetrahedron Lett., 1961, 604.
- 432. S. Gronowitz and S. Hagen, Ark. Kemi, **27**, 153 (1967) [C.A., **67**, 99931x (1967)].
- 433. Y. L. Gol'dfarb and M. L. Kirmalova, Zh. Obshch. Khim., **29**, 897 (1959) [C.A., **54**, 1485d (1960)].
- 434. Y. L. Gol'dfarb and Y. B. Vol'kenshtein, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, **1960**, 2738 [C.A., **55**, 14423g (1961)].
- 435. D. W. H. MacDowell and A. T. Jeffries, J. Org. Chem., 35, 871 (1970).
- 436. C. J. Grol, Tetrahedron, **30**, 3621 (1974).
- 437. S. Gronowitz, J. E. Skramstad, and B. Eriksson, Ark. Kemi, 28, 99 (1967) [C.A., 69, 2886s (1968)].
- 438. D. W. H. MacDowell and T. B. Patrick, J. Org. Chem., **32**, 2441 (1967).
- 439. D. W. H. MacDowell and A. T. Jeffries, J. Org. Chem., 36, 1053 (1971).
- 440. T. Kauffmann and R. Otter, Angew. Chem., 88, 513 (1976).
- 441. J. Morel, C. Paulmier, and P. Pastour, C. R. Acad. Sci., Paris, Ser. C, **269**, 37 (1969).
- 442. H. Wynberg, J. De Wit, and H. J. M. Sinnige, J. Org. Chem., **35**, 711 (1970).
- 443. L. H. Klemm, E. E. Klopfenstein, R. Zell, D. R. McCoy, and R. A. Klemm, J. Org. Chem., 34, 347 (1969).
- 444. L. H. Klemm and R. E. Merrill, J. Heterocycl. Chem., 11, 355 (1974).
- 445. R. P. Dickinson and B. Iddon, J. Chem. Soc., C, 1971, 182.
- 446. T. V. Shchedrinskaya, V. P. Litvinov, P. A. Konstantinov, Y. L. Gol'dfarb, and E. G. Ostapenko, Khim. Geterotsikl. Soedin., **1973**, 1026 [C.A., **79**,

126198v (1973)].

- 447. S. Gronowitz, J. Rehnö, and J. Sandström, Acta Chem. Scand., **24**, 304 (1970).
- 448. E. N. Karaulova, D. S. Meilanova, and G. D. Gal'pern, Zh. Obshch. Khim., **30**, 3292 (1960) [C.A., **55**, 19892a (1961)].
- 449. J. E. Banfield, W. Davies, N. W. Gamble, and S. Middleton, J. Chem. Soc., **1956**, 4791.
- 450. B. Iddon, H. Suschitzky, and D. S. Taylor, J. Chem. Soc., Perkin Trans. I, **1974**, 2505.
- 451. W. E. Parham and B. Gadsby, J. Org. Chem., 25, 234 (1960).
- 452. R. H. Meen and H. Gilman, J. Org. Chem., 20, 73 (1954).
- 453. N. B. Chapman, C. G. Hughes, and R. M. Scrowston, J. Chem. Soc., C, **1971**, 463.
- 454. V. P. Litvinov, Y. L. Gol'dfarb, V. V. Zelentsov, L. G. Bogdanova, and N. N. Petukhova, Khim. Geterotsikl. Soedin., **1975**, 486 [C.A., **83**, 96909r (1975)].
- 455. K. Clarke, G. Rawson, and R. M. Scrowston, J. Chem. Soc., C, **1969**, 537.
- 456. R. P. Dickinson and B. Iddon, J. Chem. Soc., C, 1970, 2592.
- 457. D. E. Horning and J. M. Muchowski, Can. J. Chem., 52, 2950 (1974).
- 458. R. Breslow and E. McNelis, J. Am. Chem. Soc., 81, 3080 (1959).
- 459. M. Erne and H. Erlenmeyer, Helv. Chim. Acta, 31, 652 (1948).
- 460. A. I. Meyers and G. N. Knaus, J. Am. Chem. Soc., 95, 3408 (1973).
- 461. P. Jutzi and H. J. Hoffmann, Chem. Ber., 106, 594 (1973).
- 462. P. Jutzi, H. J. Hoffmann, K. Beier, and K. H. Wyes, J. Organomet. Chem., **82**, 209 (1974).
- 463. S. Gronowitz and T. Frejd, Acta Chem. Scand., B30, 313 (1976).
- 464. J. Morel, C. Paulmier, D. Semard, and P. Pastour, C. R. Acad. Sci., Paris, Ser. C, **270**, 825 (1970).
- 465. G. Hinrio, J. Morel, and P. Pastour, Ann. Chim. (Paris), 10, 37 (1975).
- 466. J. Morel, C. Paulmier, and P. Pastour, J. Heterocycl. Chem., **9**, 355 (1972).
- 467. C. Paulmier and P. Pastour, Bull. Soc. Chim. Fr., **1966**, 4021.
- 468. H. Böhme and W. Stammberger, Arch. Pharm. (Weinheim), **305**, 392 (1972).
- 469. G. Köbrich, W. E. Breckoff, and W. Drischel, Justus Liebigs Ann. Chem., **704**, 51 (1967).
- 470. G. Köbrich and W. Drischel, Angew. Chem., Int. Ed. Engl., 4, 74 (1965).
- 471. G. Köbrich and W. Drischel, Tetrahedron, 22, 2621 (1966).

- 472. J. H. Boyer and R. F. Reinisch, J. Am. Chem. Soc., 82, 2218 (1960).
- 473. M. Sorm and S. Nespurek, Collect. Czech. Chem. Commun., **40**, 3459 (1975).
- 474. C. V. Greco and B. P. O'Reilly, J. Heterocycl. Chem., 7, 1433 (1970).
- 475. G. Van Koten and J. G. Noltes, Chem. Commun., 1972, 940.
- 476. G. Pifferi and R. Monguzzi, J. Heterocycl. Chem., 9, 1445 (1972).
- 477. Z. Horii, H. Hakusui, T. Shigeuchi, M. Hanaoka, and T. Momose, Yakugaku Zasshi, **92**, 503 (1972) [C.A., **77**, 84156b (1973)].
- 478. A. C. Ranade, R. S. Mali, R. M. Gidwani, and H. R. Deshpande, Chem. Ind. (London), **1977**, 310.
- 479. M. Cugnon de Sevricourt and M. Robba, Bull. Soc. Chim. Fr., 1977, 142.
- 480. G. Van Koten, C. A. Schaap, and J. G. Noltes, J. Organomet. Chem., **99**, 157 (1975).
- 481. G. Van Koten and J. G. Noltes, J. Am. Chem. Soc., 98, 5393 (1976).
- 482. B. H. Bhike and V. P. Gupta, Indian J. Chem., **15B**, 30 (1977).
- 483. A. C. Ranade, R. S. Mali, S. R. Bhide, and S. R. Mehta, Synthesis, **1976**, 123.
- 484. M. Julia, M. Duteil, and J. Y. Lallemand, J. Organomet. Chem., **102**, 239 (1975).
- 485. G. Van Koten and J. G. Noltes, J. Organomet. Chem., **104**, 127 (1976).
- 486. C. C. Eaborn, P. Golborn, and R. Taylor, J. Organomet. Chem., **10**, 171 (1967).
- 487. C. L. Mao, I. T. Barnish, and C. R. Hauser, J. Heterocycl. Chem., **6**, 475 (1969).
- 488. W. J. Houlihan, U.S. Pat. 3,745,165 (1973) [C.A., 79, 66201d (1973)].
- 489. W. J. Houlihan, U.S. Pat. 3,879,418 (1975) [C.A., 83, 58651t (1975)].
- 490. W. J. Houlihan, U.S. Pat. 3,838,174 (1974) [C.A., 81, 151979z (1974)].
- 491. N. S. Narasimhan and R. S. Mali, Synthesis, 1975, 797.
- 492. W. J. Houlihan, U.S. Pat. 3,767,673 (1973) [C.A., 80, 59882u (1974)].
- 493. N. S. Narasimhan and B. H. Bhide, Tetrahedron, 27, 6171 (1971).
- 494. N. S. Narasimhan and B. H. Bhide, Chem. Commun., **1970**, 1552.
- 495. B. H. Bhide and H. J. Parekh, Chem. Ind. (London), 1974, 733.
- 496. H. Watanabe, C. L. Mao, and C. R. Hauser, J. Org. Chem., **34**, 1786 (1969).
- 497. B. Cederlund, R. Lantz, A. B. Hörnfeldt, O. Thorstad, and K. Undheim, Acta Chem. Scand., **B31**, 198 (1977).
- 498. K. Bowden, G. Crank, and W. J. Ross, J. Chem. Soc., C, 1968, 172.
- 499. W. Vetter, G. Schill, and C. Zürcher, Chem. Ber., 107, 424 (1974).
- 500. J. Boeckmann and G. Schill, Chem. Ber., **110**, 703 (1977).

- 501. G. Van Koten, A. J. Leusink, and J. G. Noltes, J. Organomet. Chem., **85**, 105 (1975).
- 502. Q. Q. Dang, Bull. Soc. Chim. Fr., 1973, 767.
- 503. R. Levine and J. R. Sommers, J. Org. Chem., 39, 3559 (1974).
- 504. A. K. Tanaka, A. Kobayashi, and K. Yamashita, Agric. Biol. Chem., **37**, 669 (1973) [C.A., **79**, 53136m (1973)].
- 505. J. P. Lambooy, J. Am. Chem. Soc., 78, 771 (1956).
- 506. M. E. Lewellyn and D. S. Tarbell, J. Org. Chem., 39, 1755 (1974).
- 507. H. Böhme and U. Bomke, Arch. Pharm., 303, 779 (1970).
- 508. R. K. Razdan, H. G. Pars, B. A. Zitko, V. V. Kane, and W. R. Thompson, Tetrahedron Lett., **1973**, 1623.
- 509. E. D. Bergmann, R. Pappo, and D. Ginsburg, J. Chem. Soc., **1950**, 1369.
- 510. B. G. Pring, Acta Chem. Scand., 27, 3873 (1973).
- 511. N. S. Narasimhan and S. P. Chandrachood, Indian J. Chem., **11**, 1192 (1973).
- 512. G. Schill and K. Murjahn, Chem. Ber., 104, 3587 (1971).
- 513. J. Kalamar, E. Steiner, E. Charollais, and T. Posternak, Helv. Chim. Acta, **57**, 2368 (1974).
- 514. I. W. Mathison, R. C. Gueldner, and D. M. Carroll, J. Pharm. Sci., **57**, 1820 (1968).
- 515. N. S. Narasimhan and R. S. Mali, Tetrahedron Lett., **1973**, 843.
- 516. W. J. Houlihan and A. J. Pieroni, J. Heterocycl. Chem., **10**, 405 (1973).
- 517. N. S. Narasimhan and R. S. Mali, Tetrahedron, 30, 4153 (1974).
- 518. M. Hallet and R. Huls, Bull. Soc. Chim. Belg., 61, 33 (1952).
- 519. D. W. Slocum and B. P. Koonsvitsky, J. Org. Chem., 38, 1675 (1973).
- 520. J. K. K. Lam and M. V. Sargent, J. Chem. Soc., Perkin Trans. I, **1974**, 1417.
- 521. R. A. Barnes and W. M. Bush, J. Am. Chem. Soc., 81, 4705 (1959).
- 522. M. Sato, S. Ebine, and J. Tsunetsugu, Tetrahedron Lett., 1977, 855.
- 523. M. Cushman and N. Castagnoli, Jr., J. Org. Chem., **39**, 1546 (1974).
- 524. R. Mechoulam and Y. Gaoni, J. Am. Chem. Soc., 87, 3273 (1965).
- 525. H. O. House, T. M. Bare, and W. E. Hanners, J. Org. Chem. **34**, 2209 (1969).
- 526. R. C. Ronald, Tetrahedron Lett., **1975**, 3973.
- 527. R. Stern, J. English, Jr., and H. G. Cassidy, J. Am. Chem. Soc., **79**, 5792 (1957).
- 528. W. E. Parham and E. L. Anderson, J. Am. Chem. Soc., 70, 4187 (1948).
- 529. H. Gilman and R. D. Gorsich, J. Org. Chem., 22, 687 (1957).

- 530. B. A. Hess, Jr., A. S. Bailey, B. Bartusek, and V. Boekelheide, J. Am. Chem. Soc., **91**, 1665 (1969).
- 531. G. Wittig, W. Uhlenbrock, and P. Weinhold, Chem. Ber., **95**, 1692 (1962).
- 532. H. Gilman, W. J. Meikle, and J. W. Morton, Jr., J. Am. Chem. Soc., **74**, 6282 (1952).
- 533. D. Y. Curtin and M. J. Fletcher, J. Org. Chem., **19**, 352 (1954).
- 534. V. P. Litvinov, D. D. Gverdtsiteli, and E. D. Lubuzh, Izv. Akad. Nauk SSSR, Ser. Khim., **1972**, 79 [C.A., **77**, 34226h (1972)].
- 535. F. M. Stoyanovich and B. P. Fedorov, Angew. Chem., Int. Ed. Engl., 5, 127 (1966).
- 536. H. Gilman and D. L. Esmay, J. Am. Chem. Soc., **75**, 278 (1953).
- 537. D. A. Shirley and E. A. Lehto, J. Am. Chem. Soc., 77, 1841 (1955).
- 538. G. Köbrich, Chem. Ber., 92, 2981 (1959).
- 539. K. Oita and H. Gilman, J. Org. Chem., 22, 336 (1957).
- 540. F. M. Stoyanovich, G. B. Chermanova, Y. L. Gol'dfarb, and R. G. Karpenko, Izv. Akad. Nauk SSSR, Ser. Khim., **1976**, 1583 [C.A., **85**, 177163m (1976)].
- 541. W. E. Truce and O. L. Norman, J. Am. Chem. Soc., 75, 6023 (1953).
- 542. H. E. Zieger and G. Wittig, J. Org. Chem., 27, 3270 (1962).
- 543. Y. L. Gol'dfarb and F. M. Stoyanovich, Izv. Akad. Nauk SSSR, Ser. Khim., **1975**, 1588 [C.A., **83**, 178626h (1975)].
- 544. D. A. Shirley and E. A. Lehto, J. Am. Chem. Soc., 79, 3481 (1957).
- 545. H. Watanabe, R. L. Gay, and C. R. Hauser, J. Org. Chem., **33**, 900 (1968).
- 546. R. A. Abramovitch, E. M. Smith, M. Humber, B. Purtschert, P. C. Srinivasan, and G. M. Singer, J. Chem. Soc., Perkin Trans. I, **1974**, 2589.
- 547. R. J. Harper, Jr., E. J. Soloski, and C. Tamborski, J. Org. Chem., **29**, 2385 (1964).
- 548. C. Tamborski, W. H. Burton, and L. W. Breed, J. Org. Chem., **31**, 4229 (1966).
- 549. C. Tamborski and E. J. Soloski, J. Org. Chem., 31, 746 (1966).
- 550. S. S. Dua and H. Gilman. J. Organomet. Chem., 64, C-1 (1974).
- 551. A. M. Roe, R. A. Burton, and D. R. Reavill, Chem. Commun., **1965**, 582.
- 552. R. Koppong, J. Fluorine Chem., 5, 323 (1975) [C.A., 83, 42934b (1975)].
- 553. C. Tamborski, E. J. Soloski, and C. E. Dills, Chem. Ind. (London), **1965**, 2067.
- 554. K. Shiina, T. Brennan, and H. Gilman, J. Organomet. Chem., 11, 471

(1968).

- 555. I. Haiduc and H. Gilman, J. Organomet. Chem., **12**, 394 (1968).
- 556. W. J. Houlihan, U.S. Pat. 3,823,134 (1974) [C.A., 81, 77692g (1974)].
- 557. W. J. Houlihan, U.S. Pat. 3,898,275 (1975) [C.A., 83, 147305a (1975)].
- 558. D. E. Grocock, T. K. Jones, G. Hallas, and J. D. Hepworth, J. Chem. Soc., C, **1971**, 3305.
- 559. N. S. Narasimhan, M. V. Paradkar, and R. H. Alurkar, Tetrahedron, **27**, 1351 (1971).
- 560. H. Gilman and S. Gray, J. Org. Chem., 23, 1476 (1958).
- 561. U. Schmidt, J. Gombos, E. Haslinger, and H. Zak, Chem. Ber., **109**, 2628 (1976).
- 562. O. Riobe, A. Lebouc, J. Delaunay, and M. H. Normant, C. R. Acad. Sci., Paris, Ser. C, **284**, 281 (1977).
- 563. J. E. Baldwin, O. W. Lever, and N. R. Tzodikov, J. Org. Chem., **41**, 2874 (1976).
- 564. J. Beraud and J. Metzger, Bull. Soc. Chim. Fr., 1962, 2072.
- 565. Y. L. Gol'dfarb, G. B. Chermanova, and F. M. Stoyanovich, Tezisy Dokl. Nauchn. Sess. Khim. Tekhnol. Org. Soedin. Sery Sernistykh Neftei, 1974, 178 [C.A., 86, 43476c (1977)].
- 566. N. D. Ly and M. Schlosser, Helv. Chim. Acta, 60, 2085 (1977).
- 567. P. Netchitailo, J. Morel, and J. C. Halle, J. Chem. Res., (S), 1977, 196.
- 568. F. Fringuelli, S. Gronowitz, A. B. Hörnfeldt, I. Johnson, and A. Taticchi, Acta Chem. Scand., **B30**, 605 (1976).
- 569. A. S. Fletcher and K. Swaminathan, J. Chem. Soc., Perkin Trans. I, **1977**, 1881.
- 570. D. W. H. MacDowell and F. H. Ballas, J. Org. Chem., 42, 3717 (1977).
- 571. R. M. Sandifer, C. F. Beam, M. Perkins, and C. R. Hauser, Chem. Ind. (London), **1977**, 231.
- 572. F. M. Stoyanovich, R. G. Karpenko, G. I. Gorushkina, and Y. L. Gol'dfarb, Tetrahedron, **28**, 5017 (1972).
- 573. R. J. Sundberg, J. Heterocycl. Chem., 14, 517 (1977).
- 574. S. Cabiddu, S. Melis, P. P. Piras, and M. Secci, J. Organomet. Chem., **132**, 321 (1977).
- 575. S. Gronowitz, A. Konar, and A. B. Hörnfeldt, Chem. Scr., **10**, 159 (1976) [C.A., **87**, 201377 (1977)].
- 576. R. K. Boeckman, Jr., and K. J. Bruza, Tetrahedron Lett., **1977**, 4187.
- 577. A. R. Acherakar, V. N. Gogte, and B. D. Tilak, Indian J. Chem., Sec. B, 15, 408 (1977).
- 578. K. Smith and K. Swaminathan, J. Chem. Soc., Chem. Commun., 1976,

387.

- 579. R. R. Fraser and P. R. Hubert, Can. J. Chem., 52, 185 (1974).
- 580. J. C. Chen, Org. Prep. Proced. Int., 8, 91 (1976).
- 581. D. J. Chadwick, J. Chem. Soc., Chem. Commun., 1974, 790.
- 582. E. T. Holmes and H. R. Snyder, J. Org. Chem., 29, 2155 (1964).
- 583. F. E. Ziegler and E. B. Spitzner, J. Am. Chem. Soc., 92, 3492 (1970).
- 584. F. E. Ziegler and E. B. Spitzner, J. Am. Chem. Soc., 95, 7146 (1973).
- 585. H. R. Snyder, F. Verbanac, and D. B. Bright, J. Am. Chem. Soc., **74**, 3243 (1952).
- 586. D. A. Shirley and P. W. Alley, J. Am. Chem. Soc., 79, 4922 (1957).
- 587. A. M. Roe, J. Chem. Soc., 1963, 2195.
- 588. D. S. Noyce, G. T. Stowe, and W. Wong, J. Org. Chem., **39**, 2301 (1974).
- 589. E. F. Godefroi and J. J. H. Geenan, J. Med. Chem., 18, 530 (1975).
- 590. H. Ogura and H. Takahashi, J. Org. Chem., **39**, 1374 (1974).
- 591. P. A. Alley and D. A. Shirley, J. Org. Chem., 23, 1791 (1958).
- 592. B. A. Tertov, N. A. Ivankova, and A. M. Simonov, Zh. Obshch. Khim., **32**, 2989 (1962) [C.A., **58**, 9048b (1963)].
- 593. R. A. Abramovitch, M. Saha, E. M. Smith, and R. T. Coutts, J. Am. Chem., Soc., **89**, 1537 (1967).
- 594. R. A. Abramovitch, E. M. Smith, E. E. Knaus, and M. Saha, J. Org. Chem., **37**, 1690 (1972).
- 595. R. A. Abramovitch, J. Campbell, E. E. Knaus, and A. Silhankova, J. Heterocycl. Chem., **9**, 1367 (1972).
- 596. R. A. Abramovitch and E. E. Knaus, J. Heterocycl. Chem., 6, 989 (1969).
- 597. T. Kauffmann, B. Greving, J. König, A. Mitschker, and A. Woltermann, Angew. Chem., Int. Ed. Engl., **14**, 713 (1975).
- 598. A. B. Levy and S. J. Schwartz, Tetrahedron Lett., 1976, 2201.
- 599. P. H. M. Schreurs, J. Meijer, P. Vermeer, and L. Brandsma, Tetrahedron Lett., **1976**, 2387.
- 600. B. R. O'Connor, J. Org. Chem., 33, 1991 (1968).
- 601. E. M. Dexheimer and L. Spialter, J. Organomet. Chem., **107**, 229 (1976).
- 602. Y. Leroux and R. Mantione, J. Organomet. Chem., 30, 295 (1971).
- 603. Y. Leroux and R. Mantione, Tetrahedron Lett., **1971**, 591.
- 604. R. R. Schmidt and J. Talbiersky, Synthesis, 1977, 869.
- 605. R. H. Everhardus, H. G. Eeuwhorst, and L. Brandsma, J. Chem. Soc., Chem. Commun., **1977**, 801.
- 606. A. C. Ranade and J. Gopal, Chem. Ind. (London), 1978, 582.

607. A. I. Belyashova, N. N. Zatsepina, E. N. Malysheva, A. F. Pozharskii, L. P. Smirnova, and I. F. Tupitsyn, Khim. Geterotsikl. Soedin, **1977**, 1544 [C.A., **88**, 73917f (1978)].
# Intramolecular Reactions of Diazocarbonyl Compounds

Steven D. Burke, University of Pittsburgh, Pittsburgh, Pennsylvania Paul A. Grieco, University of Pittsburgh, Pittsburgh, Pennsylvania

## 1. Introduction

Since the demonstration by Stork and Ficini in 1961 that unsaturated diazoketones undergo intramolecular cyclization to form cyclopropanes (Eq. 1), (1) the intramolecular reactions of  $\alpha$  -diazocarbonyl compounds have been extensively studied under thermal, catalytic, and photochemical conditions. Intramolecular cyclization of  $\alpha$ -carbonyl carbenes and carbenoids has found widespread application to the synthesis of theoretically interesting compounds such as bullvalene, (2) twistane, (3) bridged annulenes, (4, 5) and barbaralone, (2) as well as syntheses of natural products such as sabinene, (6) sirenin, (7-12)  $\alpha$ -chamigrene, (13) and phyllocladene. (14) The reaction has also allowed the construction of several intriguing polycyclic systems that were unattainable by alternative methods. (15)



A recent review has covered the reactions of diazoacetic esters with alkenes, alkynes, heterocyclics, and aromatic compounds. (16) Unsaturated alkoxycarbonyl carbenes (:CHCO₂R) and unsaturated carbonyl carbenes (:CHCOR) (where R contains either aromatic or olefinic groups), which are considered to be intermediates in the absence of catalyst, have been the subject of several other reviews. (17-20) A review concerning photochemically, thermally, and catalytically induced Wolff rearrangements ofα-diazocarbonyl compounds has recently appeared. (21) However, to date no comprehensive review has appeared which demonstrates the synthetic potential ofα-diazocarbonyl insertion and addition reactions.

In reviewing the reactions of  $\alpha$ -diazocarbonyl compounds we have chosen not to include certain peripheral topics such as intermolecular reactions, intramolecular dimerization of bis( $\alpha$ -carbonyl carbenoids) to give diacyl cycloolefins (Eq. 2), (22) and intramolecular trimerizations of tris( $\alpha$ -keto carbenoids), affording triacylcyclopropanes (Eq. 3). (23) Also excluded are base-catalyzed reactions of  $\alpha$ -diazocarbonyl compounds (24) and certain ring-contraction reactions involving C–C bond insertion of intermediate $\alpha$ -ketocarbenes (Eq. 4). (25)



The topics included in this report are the intramolecular reactions of  $\alpha$ -carbonyl carbenes and carbenoids with olefinic and aromatic unsaturation, with C-H bonds, and with C - C and N - H single bonds. Also included are acid-catalyzed cyclization reactions of  $\alpha$ -diazoketones.

# 2. Mechanism

The intramolecular reactions of  $\alpha$  -carbonyl carbenes and carbenoids elaborated in this review are referred to as additions if the divalent center is reacting with olefinic or aromatic unsaturation, and as insertions if the carbenic center is reacting with a C-C, C-H, or N- H single bond. Although mechanistic studies based on intramolecular reactions of  $\alpha$  -diazocarbonyl compounds are relatively few, analogous intermolecular reactions have been rather extensively studied, and it is from these reports that much of the contemporary thought on the mechanism of the intramolecular reactions has been inferred. (16-20)

Photochemical, catalytic, or thermal conditions have been employed in the decomposition of  $\alpha$  -diazocarbonyl compounds. Catalytic conditions are most commonly used. They generate a carbene complex (as opposed to a free carbene generated by photochemical decomposition). The carbene complex is referred to in this report as a carbenoid species. The catalytic decompositions are carried out under homogeneous or heterogeneous conditions with a wide variety of catalysts, usually copper or a copper salt. However, soluble complexes of copper and palladium have also been used.

Several investigations have strongly implicated a carbene-metal-olefin complex in the homogeneous copper-catalyzed decomposition of  $\alpha$ -diazocarbonyl compounds. (26-29) The effects of varying the steric and electronic requirements of (trialkyl and triarylphosphite)copper(I) chloride catalysts have been studied in terms of the intermolecular addition of ethyl diazoacetate to olefins. (26, 27) Early work considered both intermolecular and intramolecular additions of  $\alpha$  -carbonyl carbenoids to olefins using soluble copper(II) chelates. (28, 29) Strong evidence has been provided for a carbene-copper-olefin complex as an intermediate by utilizing an optically active copper(II) complex to induce asymmetry in reaction products (Eqs. 5 and 6). (29) Although interpretations differ slightly



(5)



on the exact nature of the intermediate complexes, it is proposed that intermediates are formed where the carbene acts as a ligand coordinated to the copper by donation of its electron pair. Concomitant  $d_{\pi} - p_{\pi}$  back donation from the metal to the empty *p* orbital of the carbene carbon results in a stabilization of the complex. Analogous carbenoid complexes have been proposed as intermediates in the catalytic decomposition of  $\alpha$  -diazocarbonyls with di-  $\mu$ -chlorodi-  $\pi$  -allylpalladium (1) (30) and bis-(acetylacetonato)copper(II) (2). (28, 29, 31-34)



The carbenoid intermediates generated by the decomposition of  $\alpha$ -diazocarbonyl compounds in the presence of copper or its salts generally show reduced reactivity (hence greater selectivity), as evidenced by a lack of intermolecular C-H insertion reactions which are prevalent in thermally or photochemically generated free carbenes. One example of this type of behavior is the photolysis of allyl diazoacetate, which gave only the intermolecular insertion product. (35) In order to obtain the olefin addition product copper catalysis was required. The enhanced selectivity of the modified carbenes obtained through catalysis explicitly allows the intramolecular reactions to be of synthetic importance.



It has been suggested that the intramolecular insertion reactions of photolytically generated alkoxycarbonyl carbenes are realized only to a slight extent because of dominant conformational effects. (36, 37) For example, the low yields observed in the intramolecular C-H insertion reactions of the carbenes generated from *t*-butyl- and *t*-pentyldiazoacetates (38) can be attributed to the inability of the O-alkyl moieties to attain sufficient proximity to the carbenic center. In support of this premise, it has been demonstrated that N,N-dialkyldiazoamides (Eq. 7) undergo principally lactam formation via intramolecular C-H insertion of the photolytically generated carbene. (36, 37) In this reaction one of the alkyl groups must be held in close proximity to the divalent center by the planar amide bond.



It has also been observed that the intramolecular C-H insertion reaction proceeds with retention of configuration. (39)



As elaborated in the following section, the intramolecular addition reactions of unsaturated alkoxycarbonyl carbenoids and unsaturated ketocarbenoids are stereospecific. (40) Thus the intramolecular addition of an  $\alpha$  -diazocarbonyl compound to a suitably substituted olefinic site allows for the simultaneous construction of three asymmetric centers. The observed stereospecificity of the process has been applied to several syntheses of the sesquiterpene hormone sirenin (3) (7-12) as well as to other bicyclo[*x*.1.0] systems.



# 3. Scope and Limitations

Reactions involving intramolecular additions (1) and insertions 41a of  $\alpha$ -carbonyl carbenes and carbenoids have found widespread use in the relatively short time since their initial application. The early applications are exemplified in syntheses of compounds of theoretical interest. Highly strained compounds containing the tricyclo[2.1.0.0^{2,5}]pentane carbon skeleton were obtained via olefin addition of photolytically and catalytically decomposed diazoketones. (42-44) A large number of more recent applications were directed toward total syntheses of the following natural products containing cyclopropane rings: 3-carone, (45) aristolone, (46) thujopsene, (47) sabinene, (6) sirenin, (7-12, 48) and several others. Studies have also been directed at intramolecular C- H insertion of carbenes derived from  $\alpha$ -diazoamides to afford a new synthetic approach to  $\beta$  -lactam antibiotics. (49-55)

The following discussion elaborates some of these areas of interest, including consideration of the factors involved in the relative success or failure of the intramolecular insertion and addition reactions. Examples are chosen which illustrate a general principle or have some especially interesting characteristic features. The applications are organized into sections corresponding to the table headings.

#### 3.1. Diazoketone Additions to Olefins

The ketocarbene or ketocarbenoid addition reaction with a suitably situated olefinic moiety within the same molecule is by far the most widely encountered application. Since the prototype (Eq. 1), (1) reactions of this type have come into utilization for a wide range of synthetic goals.

For the synthesis of bicyclo [x.1.0] compounds it was found that the controlling factor in determining the usefulness of this method was the proximity of the olefin to the divalent center, whereas the nature of the substitution on the double bond had little effect. (56)

This method proved useful for the construction (albeit in low yield) of strained polycyclic compounds, notably the tricyclo[ $2.1.0.0^{2.5}$ ] pentane system. Interestingly, one synthesis is based on a photochemical decomposition of the diazoketone (Eq. 8), (42, 43) whereas the other is based on catalytic carbenoid generation (Eq. 9). (44)





The low yields associated with the conversions indicated in Eqs. 8 and 9 are undoubtedly attributable to fragmentation of the initially formed tricyclic systems. It has recently been observed 57–60a that catalytic decomposition of  $\beta$ ,  $\gamma$ -unsaturated diazoketones of this type can lead to rearranged  $\gamma$ ,  $\delta$ -unsaturated carboxylic acid derivatives in a process termed the vinylogous Wolff rearrangement. (59) Mechanistic pathways for this process have been proposed. 60a This method provides a synthetic alternative to the Claisen rearrangement.



Other theoretically intriguing compounds prepared by intramolecular carbenoid addition are barbaralone (Eq. 10), (2) twistane (4), (3) a [4.4.4]propellane (5), (61) and a bridged [14] annulene (Eq. 11). (4) Hydrocarbons 4 and 5 are of course not directly attainable by this method, but their syntheses do proceed through cyclopropyl ketones obtained via intramolecular diazoketone-olefin addition.



Many natural products have been obtained through synthetic application of this type of reaction. The stereospecific nature of the addition is put to good use in achieving the proper stereochemistry about the three-membered ring in natural products that contain a cyclopropyl ring. Examples of compounds synthesized in this manner are sirenin (3) (p. 370), (7-12)



aristolone (7), (45) thujopsene (8), (47), 62a longicyclene (9), (63, 64) and sesquicarene (10). (65-69)

In several applications the cyclopropyl ketone resulting from intramolecular cyclization of an olefinic ketocarbenoid is subsequently cleaved by hydrogenolysis, (70-75) protonolysis, (70, 72, 74, 76-78) lithium/ammonia reduction, (70, 74, 79) or Lewis-acid treatment. (80-83) The spiro sesquiterpenoids,  $\alpha$ -chamigrene (11) (13) and epihinesol (12), (77, 84) as well as the tetracyclic diterpenes kaurene (13) (14) and phyllocladene (14), (14) have been synthesized in this manner.

This strategy involving intramolecular olefinic ketocarbenoid addition followed by regio- and stereospecific cleavage of one of the conjugated cyclopropane bonds has been applied to the synthesis of many compounds containing the bicyclo[3.2.1]octane (71, 72, 75, 76, 78, 79) and bicyclo[2.2.2]octane (76, 78) ring systems in addition to phyllocladene and kaurene. The two-step, intramolecular, angular-alkylation sequence takes on particular importance in that it has allowed the construction of skeletal analogs of the plant-growth-regulatory gibberellin diterpenes [*e.g.*, gibberellic acid (**15**)] and of the sesquiterpenoid helminthosporins [*e.g.*,



helminthosporic acid (16)] which possess gibberellin-like activity. Exemplary of this application are the tricyclic compounds 17 and 18. (79)

An interesting application to the synthesis of bicylo[3.2.1]octane and bicylo[2.2.2]octane systems uses a retrograde Michael reaction to effect regiocontrolled cleavage of the cyclopropane. (78) The cyclopropane bond



cleaved in Eqs. 12 and 13 is the one that is activated by both carbonyl groups. Conceptually the sequence allows for intramolecular  $\gamma$  alkylation of an incipient  $\alpha$ ,  $\beta$ -unsaturated ketone.



The intramolecular olefinic ketocarbenoid addition reaction provided ready

access to a series of compounds which were used to demonstrate a Lewis-acid-catalyzed cleavage of an acylcyclopropane with simultaneous participation of a suitably situated olefinic or aromatic center, leading to ring formation. 80–83a Illustrative of this study, which also nicely demonstrates the stereospecificity of the internal diazoketone addition, (40) is the sequence shown in Eqs. 14 and 15. 83a



In another intramolecular addition of ketocarbenoids to unsaturated centers, bicyclo[5.3.0]decatrienones have been synthesized (85-87) and subsequently converted to azulenes. (87) The sequence outlined in Eq. 16 is representative. (87)

The unstable norcaradiene resulting from addition of the ketocarbenoid to the

1,2 position of the aromatic ring isomerizes by ring opening and subsequent 1,5-hydrogen shift to the trienone (19).



Finally, an interesting example has been reported involving the intramolecular addition of a ketocarbenoid to a furan ring. (88) The intermediate heterocyclic ring system thus formed undergoes ring opening to give the ketoaldehyde 20.



#### 3.2. Diazoester Additions to Olefins

The addition of alkoxycarbonyl carbenoids to internally situated olefinic sites has not been used as extensively as olefinic ketocarbenoid additions. However, the synthetic potential of this type of reaction is clear.

The decomposition of allyl diazoacetate is catalyzed by various copper reagents, and the bicyclic lactone (21) is formed in an optimium yield of 52%. (35) Similar applications provided syntheses of three bicyclic lactone esters in yields of 50–55%. (89, 90)





In an extension of this method to the construction of tetracyclic lactones such as 22 and 23 it was found that the intramolecular addition reaction is complicated by the formation of maleate and fumarate esters, formally carbene dimer products. (91) This type of behavior was also observed elsewhere, (35) implying that alkoxycarbonyl carbenoids are not as selective in their reactions as the analogous ketocarbenoids.



More recently it was found that the intramolecular addition reactions of carbenoids derived from mixed diazomalonates yielded lactones of 1-hydroxymethyl-7-carboxycycloheptatrienes. 92,93a



The copper-catalyzed decomposition of *trans, trans*-farnesyl diazoacetate (24) provided a stereoselective route to racemic presqualene alcohol through bicyclic lactone 25. (94)

An interesting application has been made to the synthesis of a promising intermediate **26** for prostanoid synthesis. (95) The demonstration that cleavage of the cyclopropane can be achieved via homoconjugate addition of an organocopper (Gilman) reagent to compound **26** suggests a stereocontrolled route to prostaglandins.



Interest in certain cytotoxic natural products containing  $\alpha$ -methylene- $\gamma$ -butyrolactones prompted the sequence shown in Eq. 17. (96) A similar study led to the synthesis of spiro lactone **27** and spiro ketone **28**. (97)





The stereocontrolled generation of acyclic side chains of natural products (*e.g.*, steroids and prostaglandins) has recently been reported, (98-100) utilizing the nucleophilic ring opening of appropriately substituted acylcyclopropanes.



#### 3.3. Diazocarbonyl Insertions into C-H Bonds

Although the majority of the synthetic intramolecular reactions of  $\alpha$ -diazocarbonyl compounds have relied on conditions that supress insertion into C-H bonds in favor of intramolecular cycloaddition of the carbene or carbenoid to an olefinic moiety, many important and otherwise difficult synthetic transformations have been based on intramolecular C-H insertion of  $\alpha$  -diazocarbonyl compounds.

Initial observation of intramolecular cyclization via such a C-H insertion reaction was made when 21-diazo-5  $\alpha$  -pregnan-20-one (29) was decomposed in refluxing toluene in the presence of copper(I) oxide. (41)



Several examples demonstrate that in geometrically rigid systems intramolecular C- H insertion is a highly favored process. Indicative of this is the study in which diazocamphor was catalytically decomposed to give cyclocamphanone (**30**) in high yield with no evidence of intermolecular addition or insertion products. (**101**) Contrast this with the behavior of 3-diazobicyclo[2.2.2]octan-2-one (**31**) which, upon copper-catalyzed decomposition in benzene, gives mainly the Wolff rearrangement product with only 5% formation of compound **32**. (**102**) Another illustration of geometrically favored intramolecular attack at an unactivated C- H bond is furnished by the 1-substituted adamantane derivative, which gives the tetracyclic ketone **33** in 70–80% yield. (**103**)



In some instances intramolecular C- H insertion has been observed when diazoketones are decomposed under Wolff rearrangement conditions. (104-107) For example, anomalous Wolff rearrangement products **34** and **35** are formed, *inter alia*, from the corresponding diazoketone. (104) Similarly, one of the products of the attempted Wolff rearrangement of diazoketone **36** is the C-H insertion product **37**, which was obtained in 22% yield. (105)



A general study of intramolecular C- H insertion reactions of diazoketones catalyzed by copper(II) sulfate in cyclohexane is summarized in Eq. 18. (105)



Several transannular C- H insertions have been reported in which monocyclic  $\alpha$ -diazoketones are converted to *cis*-fused bicyclic ketones. (108)



Applications have also been made to functionalization of diterpenoids. The isopropyl group of dehydroabietic acid was functionalized by intramolecular C-H insertion of the C–12 diazomethyl ketone **38**. (109) A partial synthesis of

the tetracyclic diterpene isohibaene **39** (p. 382) uses as the key step a regiospecific C- H ketocarbenoid insertion. (110) The observed insertion is toward the tertiary  $C_{8}$ - H bond, whereas insertion into the secondary  $C_{11}$ - H (axial) bond is not observed. The key step in the total



synthesis of atisine, veatchine, and gibberellin- $A_{15}$  involves an intramolecular angular alkylation based on the regioselective and stereospecific intramolecular  $\alpha$  -ketocarbenoid insertion reaction illustrated in Eq. 19. (111-113)



The intramolecular C- H insertion reactions of  $\alpha$  -diazoamides have been shown to give fused and monocyclic  $\beta$  -lactams. (36, 37, 49-55) The initial demonstration of this type of reaction was made in the synthesis of methyl-6-phenylpenicillinate (41). (49) The ease with which carbenes derived from  $\alpha$ -diazo amides undergo intramolecular C-H insertion, in contrast to the behavior of nonrigid alkoxycarbonyl carbenes, (38) has been attributed to a conformational effect of the planar amide bond forcing the C- H bond close to the divalent center. (36, 37) The photochemical decomposition of N,N-diethyldiazoacetamide gives the two possible intramolecular C-H insertion products unaccompanied by any intermolecular insertion products (Eq. 7). (36, 37) Further applications have been made to the synthesis of nuclear analogs of the penicillin-cephalosporin antibiotics leading to compounds **42**, (52, 53) **43**, (54) **44**, (54) and **45**. (55)



The copper-catalyzed decomposition of mixed diazomalonates has been used to prepare  $\gamma$  -butyrolactones. (39, 114) It was found that chlorobenzene is a superior solvent for intramolecular C-H insertions of this type.



#### 3.4. Acid-Catalyzed Diazoketone Cyclizations

A facet of diazocarbonyl chemistry that was observed some 30 years ago (115, 116) and is continuing to generate a great deal of interest is the acid-catalyzed cyclization of diazomethyl ketones through  $\pi$  participation of suitably situated olefinic bonds or aromatic groups. (117-121) The reaction probably proceeds via initial protonation (Brönsted-acid catalysis) or complexing (Lewis-acid catalysis) of the diazocarbonyl functionality, followed by displacement of nitrogen from the resultant diazonium species by  $\pi$ -bond participation. (122) This method promises to be of great synthetic utility for carbocyclic ring annulation, as a single product is frequently obtained in essentially quantitative yield.

This method was applied to construct the skeleton of the sesquiterpene  $\alpha$ -patchoulane. 118a The one-step, acid-catalyzed cyclization of diazomethyl ketone 46 proceeded under mild conditions to give two cyclization products, 47 and 48. Other applications generate compounds containing the bicyclo[3.2.1]octane system by means of olefinic  $\pi$  -bond participation. (72, 119, 123-125) In this way intermediates are readily accessible for prospective total synthesis of a large class of tetracyclic diterpenoids. This use is illustrated by the preparation of compounds 49, (119) 50, (124) and 51. (125)



Aromatic  $\pi$  -bond participation has also been applied to the generation of compounds containing the bicyclo [3.2.1] system. (119, 126, 127) Examples of this are the two diketones shown in the following reactions (126, 127):



A further application was made to the synthesis of norhelminthosporin analogs via **52** and **53**. (123)



Compound **54**, containing the bicyclo[2.2.2]octane ring system, has also been prepared in fair yield by this acid-catalyzed cyclization procedure. (120, 126)



It has been shown that angularly fused cyclobutanones are available through acid-catalyzed intramolecular C alkylation of  $\beta\beta$ ,  $\gamma$ -unsaturated  $\alpha$ -diazomethyl ketones. (128)



Spirodienones and products derived from a dienonephenol rearrangement have also been prepared by acid-catalyzed cyclization of aromatic diazoketones. (122)



A synthesis of semibullvalene has been reported in which the key step is the acetolysis of 4-*endo*-diazoacetylbicyclo[3.1.0]hexene (55) to give the tricyclic ketoacetate. (129)



This acid-catalyzed cyclization method has been developed into a cyclopentenone annulation sequence. An example is the conversion of diazoketone **56** to the  $\alpha$ ,  $\beta$ -unsaturated cyclopentenone. (130)



Similarly, the cyclization of acyclic  $\beta$ ,  $\alpha$ -unsaturated diazoketones provided a synthesis of cyclopentenones, *e.g., cis*-jasmone. (131)



It has been proposed that the transformation of the type **56 57** involves initial complexation of the Lewis acid to the carbonyl oxygen, producing an intermediate which can, in either a stepwise or concerted process, lose nitrogen and undergo a  $\pi$  cyclization. (121, 122, 130, 131) Appropriately functionalized diazoketones of this type have been demonstrated to undergo Lewis-acid-catalyzed polyene cyclization via internal trapping of the initially formed carbonium ion (Eq. 20). (121)





#### 3.5. Miscellaneous

Among the reactions that do not fall into the preceding categories is the insertion of an  $\alpha$  -carbonyl carbene or carbenoid into a C-C single bond to give an olefin (Eq. 21) 132a or a new ring (Eq. 22). (101)





The catalytic decomposition of bisdiazoketones has been shown to yield the 3,3 -spirobis(bicyclo[3.1.0]hexane) system. (133, 134)



There has been one report in which a vinylogous  $\alpha$  -diazo ester was used for an intramolecular cyclopropanation reaction. (48) This reaction was applied to the following synthesis of sirenin:



Recently an example of a diazoester insertion reaction into an N-H bond employing rhodium catalysis has been reported. (135)

(22)



Copper(II)-catalyzed decomposition of penicillin-derived diazoketones in aprotic solvents has been shown to result in the formation of tricyclic ketones. (136)



Finally, the acid-catalyzed decomposition of *o*-substituted diazoacetophenones possessing an oxygen functionality at the *ortho* position leads to coumaranones in high yield. (137-139)



# 4. Experimental Procedures

## 4.1.1.1. Tricyclo[2.2.1.0^{2,6}]heptan-3-one (Nortricyclanone) (140)

A solution of crude 3-cyclopenten-1-yl diazomethylketone (from 23.9 g of the corresponding acid chloride) in 100 mL of tetrahydrofuran was added through a high-dilution head over a 4.5-hour period to a stirred slurry of 25 g of Cu powder in 700 mL of boiling tetrahydrofuran. The mixture was stirred at reflux for another 2 hours, filtered, dried over magnesium sulfate, and concentrated on a steam bath. Distillation of the residue under reduced pressure gave 12.9 g (65%) of nortricyclanone (bp 72–79°/29 mm), which was 95% pure by glpc analysis on a Carbowax 20 M column. Redistillation in a vacuum-jacketed

Vigreux column (3:1 reflux ratio) gave material with bp 75–77°/15 mm,  $n_D^{25}$ 

1.4864, and a 2,4-dinitrophenylhydrazine derivative, mp 185–187° with decomposition.

## 4.1.1.2. Tricyclo[2.2.2.0^{2,6}]octan-3-one (104)

To a cold (5°) suspension of the anhydrous sodium salt from 3.77 g (30 mmol) of  $\triangle$  ³-cyclohexene-1-carboxylic acid in 30 mL of benzene containing 0.8 mL of pyridine was added, with stirring, 15 g (0.12 mol) of oxalyl chloride. The resulting mixture was stirred for 2 hours at 5°, filtered, and concentrated. The residue was dissolved in 30 mL of benzene. This solution of the crude acid chloride was added to a cold (0–5°) ethereal solution of 60 mmol of diazomethane. The solution was stirred for 2 hours at 0–5° and 12 hours at room temperature, then filtered, dried, and concentrated, leaving 4.88 g of the crude diazoketone as a yellow liquid.

To a suspension of 400 mg of copper bronze in 250 mL of refluxing cyclohexane was added dropwise over a 1-hour period 3.79 g (25 mmol) of the diazoketone in 50 mL of cyclohexane. After stirring at reflux for 24 hours the mixture was filtered and concentrated, leaving 2.95 g of yellow liquid, which upon short-path distillation gave 2.34 g of a yellow liquid (bp  $120-130^{\circ}/20-25$  mm). Chromatography of this material on 60 g of Florisil (elution with ether-petroleum ether mixtures) followed by distillation gave 1.85 g of tricyclo[2.2.2.0^{2,6}]octan-3-one as a colorless liquid, bp

100–108°/17 mm,  $n_D^{25}$ 1.5086, which solidified on standing, mp 41–43°.

Short-path distillation (150°/25 mm) of the residue from the above distillation gave another 300 mg of product for a total yield of 2.15 g (57%).

4.1.1.3. Tetracyclo[3.3.1.0^{2,8}.0^{4,6}]nonan-3-one (Triasteranone) (141) To a solution of *endo*-7-diazoacetyl-  $\triangle$  ³-norcarene (from 2.76 g of the corresponding acid) in 1.2 L of *n*-hexane was added 19.2 g of activated copper powder. The suspension was refluxed for 12 hours, filtered, concentrated to a volume of 100 mL, and shaken with 150 mL of water. The water phase was washed with 100 mL of *n*-hexane and then with four portions (100 mL each) of chloroform. The combined organic layers were dried over sodium sulfate, and the solvent was removed under reduced pressure, yielding 1.73 g of crude triasteranone. Recrystallization from *n*-hexane and sublimation at 60°/1 mm gave 1.21 g (45%) of pure product, mp 74.5°; infrared (carbon tetrachloride)  $cm^{-1}$ : 1672 (C=O).

## 4.1.1.4. 8-Tetracyclo[4.3.0.0^{2,4}.0^{3,7}]nonen-5-one (142)

A solution of 7-diazoacetylnorbornadiene (870 mg) in 10 mL of dry tetrahydrofuran was added slowly to a stirred suspension of copper powder in 20 mL of refluxing tetrahydrofuran. The mixture was heated at reflux for 1.8 hours, then set aside at room temperature overnight. The catalyst was filtered, and approximately 1 mL of water was added to the filtrate. After a few minutes the solution was diluted with ether, extracted with water and saturated aqueous sodium bicarbonate solution, and then dried and evaporated. This procedure removed two impurities observed in the glpc analysis of the crude product. Further purification was effected by passage through a column of 15 g of silica gel (elution with 25% ether–pentane), giving 577 mg (54%) of pure cyclopropyl ketone as a colorless, clear liquid; infrared (film) cm⁻¹: 1764, 1750 (C=O).

## 4.1.1.5. 1,5,6-Triphenyltricyclo[3.1.0.0^{2,6}]hexan-3-one (143)

In a dry, three-necked flask equipped with a reflux condenser, dropping funnel, and a nitrogen inlet tube were placed 30 mL of benzene and 0.9 g of copper powder. The mixture was heated to reflux. A solution of 1-(1,2,3-triphenylcycloprop-2-enyl)-3-diazopropan-2-one (0.992 g) in 30 mL of benzene was added dropwise over a 10-minute period, and the mixture was refluxed for 1 hour, cooled, filtered, and concentrated. Chromatography with benzene on Fisher alumina (80–120 mesh) gave two fractions: 0.51 g (57%) with mp 155.5–156° and 0.068 g (7%) with mp 148–156°. Recrystallization from ethyl acetate provided an analytical sample, mp 155–157°; infrared (KBr) cm⁻¹: 1750 (C=O).

## 4.1.1.6. Tricyclo[3.3.1.0^{2,8}]nona-3,6-dien-9-one (Barbaralone) (2)

Cycloheptatrien-7-yl diazomethyl ketone (from 14 g of the acid chloride) was dissolved in 80 mL of anhydrous benzene and 80 mL of dry hexane. This solution was divided into two equal parts, and each was added dropwise over a 45-minute period to a vigorously stirred, boiling suspension of 16 g of anhydrous cupric sulfate in 160 mL of *n*-hexane under nitrogen. The mixture was refluxed for an additional hour. The supernatant liquid was decanted, and the residue was washed with acetone. The solutions were combined, concentrated to about 80 mL by distillation through a Vigreux column, and steam distilled. The distillate was extracted with three 100-mL portions of ether, and the ethereal extracts were dried over magnesium sulfate, concentrated to

50 mL, and cooled to  $-70^{\circ}$ . The crystals were collected by filtration at  $-70^{\circ}$ . Recrystallization from 30 mL of pentane at  $-70^{\circ}$  and again at -10 to  $-20^{\circ}$  followed by vacuum sublimation gave 1.6–3.5 g of barbaralone, mp 40–48°. Recrystallization from water gave colorless needles, mp 53.5°; oxime, mp 130–131°; thiosemicarbazone, mp 165°; semicarbazone, mp 205–207° (dec).

4.1.1.7. 7-endo-Methyl-7-(4-methyl-3-pentenyl)bicyclo[4.1.0]heptan-2-one (11) trans-6,10-Dimethyl-5,9-decadienyl diazomethyl ketone obtained from 2.1 g of the corresponding acid was dissolved in 1.1 mL of dry cyclohexane containing 3.0 g of anhydrous copper sulfate and refluxed for 2 hours with stirring. The mixture was then filtered and the cyclohexane removed under reduced pressure. The residue was dissolved in ether, washed with aqueous sodium bicarbonate and aqueous sodium chloride solutions, dried, and the ether was evaporated. Chromatography on 250 g of silica gel (elution with benzene, benzene–ethyl acetate mixtures) gave 1.35 g (66%) of 7-endo-methyl-7-(4-methyl-3-pentenyl)bicyclo[4.1.0]heptan-2-one; infrared (film) cm⁻¹: 1685 (C=O). A gas chromatogram (5% Carbowax 20 M, 10 ft × 0.25 in., 165°) of the oil gave one major peak with a retention time of 14 min (60 mL/min, He).

4.1.1.8. 1-Carbethoxy-3-oxa-6,6-dimethylbicyclo[3.1.0]hexan-2-one (89) To a cold (0–5°) solution of 10 g (0.05 mol) of ethyl 3-methyl-2-butenyl malonate in ether (approximately 60 mL) containing 9.8 g of tosyl azide was added dropwise 5 mL of diethylamine. After the addition was complete, the mixture was stirred for 15 minutes at 0° and 2 hours at ambient temperature. Addition of approximately 200 mL of pentane, followed by filtration, removed the tosyl azide. The filtrate was dried over sodium sulfate and concentrated to give 11 g of the diazomalonate.

The crude diazomalonate (11 g) was dissolved in 700 mL of octane and added dropwise to a suspension of 20 g of copper powder in 300 mL of octane at reflux. After 3 hours at reflux the suspension was filtered, and the solvent was removed by distillation, leaving 5 g (50%) of

1-carbethoxy-3-oxa-6,6-dimethyltricyclo[3.1.0]hexan-2-one, bp 100-105°

(0.5 mm);  $n_{\rm D}^{22} = 1.4670$ ; infrared (film) cm⁻¹: 1785, 1735 (C=O).

#### 4.1.1.9. 3-Hydroxytricyclo[4.4.1.0]undecylcarboxylic Acid Lactone (91)

A cold (0°) solution of 1.01 g (3.89 mmol) of the acid chloride of the *p*-toluene sulfonylhydrazone of glyoxylic acid in 10 mL of methylene chloride was treated successively with 577 mg (3.79 mmol) of  $\triangle$  ⁹⁽¹⁰⁾ -2-octalol and with a solution of 397 mg (3.95 mmol) of triethylamine in 2 mL of methylene chloride, and was then stirred for 30 minutes at room temperature. After a second 404-mg (3.98-mmol) portion of triethylamine was added, the mixture was stirred for 1 hour at room temperature and then concentrated under reduced pressure. A

solution of the residue in benzene was filtered through a 12-g column of Florisil to give 783 mg (89%) of the crude diazo ester. A solution of this material in hexane, when cooled to dry-ice temperatures, deposited the diazoester as yellow prisms, mp 29–32°; infrared (carbon tetrachloride) cm⁻¹: 2100 (C=N=N), 1700 (C=O); ultraviolet (*n*-hexane), nm max( $\epsilon$ ): 217 (8100), 245 (12, 700).

A solution of 2.2 g (10 mmol) of the diazo ester in 125 mL of cyclohexane was added to a suspension of 3.1 g of cuprous oxide in 125 mL of cyclohexane over a 12.5-hour period. Filtration and concentration of the filtrate gave 2.58 g of crude product, which was chromatographed on Florisil. The early fractions (eluted with 5% ether in hexane) were followed by fractions eluted with 50% ether in hexane, affording 434 mg of material containing the lactone. Repetition of the chromatography and crystallization from an ether–hexane mixture gave the pure lactone as white needles, mp 54–55.5°; infrared (carbon tetrachloride): 1735 (C =O), 1715 (shoulder).

#### 4.1.1.10. Adamantocyclopentan-2-one (103)

A solution of 1-(adamantan-1-yl)-3-diazopropan-2-one (3.8 g) in 100 mL of dry toluene was added dropwise during 5–6 hours to 400 mL of refluxing dry toluene containing 0.8 g of cupric sulfate. The mixture was refluxed for an additional 2 hours, filtered, and washed with water, 5 *N* sodium hydroxide solution, and again with water. The organic layer was dried over sodium sulfate and evaporated under reduced pressure, yielding approximately 2.8 g of a thick, light-brown oil. Glpc analysis of this oil showed a main peak consisting of 70–80% of the desired material. This peak was collected by preparative glc (6 ft × 0.25 in. glass column, 3% JRX, temperature programmed from 60 to 200°,6°/min) and concentrated to give crystalline adamantocyclopentan-2-one; mp 74–76°; semicarbazone, mp 234–236°.

#### 4.1.1.11. 1,4,5,6,7,7,a-Hexahydro-(2 H)-inden-2-one (144)

A rapidly stirred solution containing 390 mg (2.38 mmol) of the  $\alpha$  -diazoketone derived from 1-cyclohexeneacetic acid and 50 mL of dry nitromethane (distilled and stored over 4-Å molecular sieves) was treated dropwise with 355 µL (1.2 eq) of boron trifluoride etherate. After the evolution of nitrogen had ceased (» 10 min), 20 mL of 10% (v/v) aqueous hydrochloric acid was then added, and the resulting mixture was heated at reflux under nitrogen for 1 hour, cooled, and added to a 1 : 1 mixture of brine and ethyl acetate. The organic phase was then separated, washed with 5% (w/v) aqueous sodium bicarbonate solution, water, brine, and dried over anhydrous magnesium sulfate. Removal of the solvent under vacuum yielded 340 mg of an oil which contained 162 mg (50%) of the title enone. An analytical sample obtained by glpc (10 ft × 0.375 in. 25% Carbowax 20 M, column temperature 205°C) gave the following spectral data: infrared (carbon tetrachloride) cm⁻¹: 1715(C=O),1630(C=C).

# 5. Tabular Survey

The five tables that follow contain reported examples of reactions discussed in this chapter. Tables I and II list examples of the intramolecular addition of diazoketones and diazoesters to olefins, respectively, and Table III lists examples of the intramolecular insertion of diazocarbonyl compounds into C-H bonds. Table IV deals with the acid-catalyzed cyclization of diazoketones. Table V lists miscellaneous reactions of diazocarbonyl compounds.

The examples are arranged in the tables according to increasing carbon number. Products appearing in brackets represent initial cyclopropane adducts that were not isolated. Throughout all the tables the reaction conditions, when available, have been summarized. Product ratios and/or percentage yields are recorded; a dash indicates that no yield was given in the reference.

The literature has been reviewed through December 1977.

	View PDF	
Table II. Intr	ramolecular Addition of Diazoest	ers to Olefins
	View PDF	
I. Intramoleo	cular Insertion of Diazocarbonyl (	Compounds i
	Bonus	

Table IV. Acid-Catalyzed Cyclizations of Diazoketones

View PDF

Table V. Miscellaneous Reactions

View PDF
Reactant	Conditions	Product(s)	Yield (%)	Refs.
C. CHN2	CuSO ₄ , cyclohexane, reflux	$\bigcirc^{\circ}$	59	56
	Cu powder, letrabydrofuran, reflux	L PO	65	140
	Cu powder, hexane, reflux	Å	(ca. 1)	44
	Cu bronze, cyclobexane, reflux	(J ^o	(ca. 50)	Ê
	CuSO _a , cyclohexane, reflux	· ·	37	56
CHN ₂	Cu powder, cyclohexane, reflux		-	158
2	CuSO ₄ , cyclohexane, reflux		30	159
CHN ₂	CuSO4, cyclohexane, reflux	Ĵ/	30	159
C ₄	Cu catalyst	Ľ	8	160
S	Tetrahydrofuran, hv	20	Major	161
	Cu powder, benzene	" 0	30	162
CHN2	CuSO ₄ , cyclohexane, reflux	Сно	60	88
	CuSO ₄ , benzene, reflux	о Эсосна	- 37	145
CHN2	Cu powder, hexane, reflux	Store Store	31	140
$\checkmark$	Cu bronze, cyclohexane, reflux	, "	57	104
0	CuCl, cyclohexane, reflux	-	53	163
Ĭ.	And the second second	M		144

Reactant	Conditions	Product(s)	Yield (%)	Refs.
Cs (Cont. ² .) O				
CHN ₂	17	*	67	159
$\square$				
CT CDN2	· · ·		31	164
	CuSO ₄ , cyclohexane, reflux		41	164
CT_CHN2	Cu(acetylacetonate) ₂		8	57
	Cu(acetylacetonate) ₂		8	57
	CuSO ₄₄ cyclohexane, reflux	Q.	ca. 3	56
CHN ₂	Cu powder, cyclohexane, reflux	C ₂ H ₃	-	158, 16
-23	CuSO4, cyclohexane, reflux		5	159
N ₂ CH C ₂ H ₅	Cu powder, cyclohexane, reflux	C ₂ H ₅	÷	158
	CuSO ₄ , cyclohexane, reflux			158
	Cu powder, cyclohexane, reflux	Ľ,	35-42	167, 16
C ₂	CuSO.	Å + Å	2	166
CHN	CuSO, benzene-beyone (1+3)	(a)		

TABLE I.	INTRAMOLECULAR ADDITION OF DIAZOKETONES TO OLEFINS (Continued)	

Reactant	Conditions	Product(s)		Yield (%)	Refs.
C, (Contd.) Q		0			
NCH		1			
		A Am			142.14
1 >	Cu powder, tetranydrorurar	, renux		34	142, 16
		127			
~ ~					
Λ		N			
1		5			
	Cu powder, tetrahydrofurar	, reflux		÷	170
Y		KIY			
N ₂ CH 0		-6			
Q		Ŷ			
N-CH		$\sim$			
	Cu powder, hexane, reflux	20		45	171, 14
~		$\smile$			
Y PO		$\wedge$			
$\cup$	Curio and alternation of the	A	F	28	170
OCHN	Cuso ₄ , cyconetane, renux	K		30	1/2
Call'2		0.2	-0		
	CuSO ₄ , dioxane, reflux	-		38	73
		1.5			
A A 40		P			
FTF	CuSO ₄ , cyclohexane, reflu	. IS		37	159
CHN ₂					13,3
		$\checkmark$			
	CuSO ₄ , hexane, reflux			39	140
				OC.H.	1 ig
CO.C.H.	Di-µ-dichloro-π-allylpallad	ium,	+ (		1469
Y	benzene	CO.C.H			1404
COCHIN ₂		0	5		
		(33)		(3)	
	Pd(OAc) ₂ , benzene	·**	÷	" (<1)	146a
	Bis(benzoylacetonato)pallad benzene, 80°	lium "	+	" (<1)	146a
	Bis(benzoylacetonato)coppe	r, " (50)	+	(13)	146a
	benzene, 80°				
	(C ₂ H ₅ O) ₃ P·CuCl, benzene	" (3)	+	" (32)	146a
	Rh ₂ (OAc)., benzene	·· (3)	+	" (58)	1468
	Benzene, 80°		+	" (54)	146a
		N			
COCHN ₂	- 220 March 200	A			
~	Cu ₂ I ₂ , tetrahydrofuran	A		-	146b

NV

V FO

Reactant	Conditions	Product(s)	Yield (%)	Refs
C, (Contd.)		1		
	CuO, cyclohexane, reflux	3	50	163
	CuSO ₄ , hexane, reflux Cu powder, hexane, reflux CuI, hexane or acetontrile- hexane (1:1), reflux	11 12	55 47 —	140 140 140
	CuSO4, cyclohexane, reflux	S	÷	173
CHIN ₂	CuSO ₄ , cyclohexane, methanol, reflux		5	59
	Cu powder, hexane, reflux	Do	47	174
	Cu powder, hexane, reflux	Apo		17
+ 1 CHN ₂		+ 0		
+ $\int CHN_2$	Cu powder, CuSO₄, cyciohexar reflux	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	44	17
+ $\int CHN_2$ $\int CHN_2$ $\int CHN_2$ $\int CHN_2$	Cu powder, CuSO4, cyclohexaa reflux Cu, CuSO4, cyclohexane, reflux	$+ \int_{0}^{0}$	44 38	176
+ $\int CHN_2$ $\int CHN_2$ $\int CHN_2$ $\int CHN_2$	Cu powder, CuSO4, cyclohexar reflux Cu, CuSO4, cyclohexane, reflux CuSO4, cyclohexane, reflux		44 38	170
+ $\int CHN_2$ $\int CHN_2$ $\int CHN_2$ $\int CHN_2$	Cu powder, CuSO4, cyclohexar reflux Cu, CuSO4, cyclohexane, reflux CuSO4, cyclohexane, reflux Cu bronze, cyclohexane, reflux	$+ \int_{-\infty}^{+\infty} 0$	44 38	17/ 17 16

Reactant	Conditions	Product(s)	Yield (%)	Refs.
C ₁₀ CHN ₂	CuSO ₄ , benzene, reflux		41.5	56
Chr.	Cu powder, decalin, reflux	CL [°]	15, 20	85, 178
	CuCl, benzene, reflux	0 ¹	40-50	87
N ₂ CH O	Cu bronze, cyclohexane or heptane, reflux	Ş	5	179
	Cu powder, tetrahydrofuran, reflux		38	2
CHN ₂	CuSO ₄ , tetrahydrofuran, reflux	B	27	180, 181
O CHN2	Cu bronze, cyclohexane, reflu	. B	78	3, 18
CH302C	IN ₂ CuSO4, dioxane, reflux	CO ₂ CH ₃	61	73
	CuSO4, tetrahydrofuran, reflu	. 0	8	183
	Cu powder, cyclobexane, reflu	· OD°	76	85, 17
CHN.	CuSO4, hexane, reflux	$\sim$	47	140

Reactant	Conditions	Product(s)	Yield (%)	Refs.
Cio (Contd.)		Nº		
CHN ₂	CuSO ₄ , hexane, reflux	()	36	140, 159
CHN ₂	CuSO ₄ , cyclohexane, methanol, reflux	$[O4^{\circ}]$	8	59
	Cu powder, CuSO₄, cyclohexane, reflux	4°	28	176
~	Cu dust, cyclohexane, reflux	/ 	58	45
	Cu powder, cyclohexane, reflux	they	70	167, 184
	Cu bronze, cyclohexane, reflux	A	-	147
	CuSO ₄ or Cu(acetylacetonate) ₂ , cyclohexane, reflux	$CO_2CH_3 + CO_2CH_3 $ (35)		60a
-О-он	CuCl, tetrahydrofuran (0.3 M), 4.5 hr		61	60b
COCHN ₂	CuCl, tetrahydrofuran (0.16 M), 4,5 hr	107 11	79 80	60b 60b
	CuI, benzene (0.16 M), 5.5 hr		55	60b
	CuCl, benzene, 20 min			605
c _{ii}	Cu bronze, benzene, 80°	(8)	43	185

404

N₂CH

Reactant	Conditions	Product(s)	Yield (%)	Refs.
C ₁₁ (Contd.) Of CHN ₂	CuCl, benzene, reflux	-02	8	87
он С СН,	CuCl, tetrahydrofuran (0.16 M), 2 hr	CH ₃	60	60b
N ₂	CuCl, benzene (0.16 M), 2 hr	°° "O	90	605
, Carlos de la companya de la compan	Cu bronze, cyclobexane, reflux		41	104
Br	I ₂ Cu bronze, cyclohexane, reflux	Br	43	186
CH ₃ O ₂ C	CuSOs, dioxane, reflux N ₂	CO2CH3	50	73
CHN ₂ FO	CuSO ₄ , tetrahydrofuran, reflux	P	51	188
F	Cu powder, cyclohexane, reflux		55	189
n-C ₃ H ₇	cH3OH, hv,	¹ C ₃ n ₇ C ₃ n ₇ - <i>n</i>	10-15	42, 43
	CuSO ₄ , cyclohexane, CH ₃ OH, reflux		8	59
COCHN ₂	CuSO4, benzene, reflux	(T)°	15	149

TABLE I.	INTRAMOLECULAR ADDITION OF DIAZOKETONES TO OLEFINS (Continued)

Reactant	Conditions	Product(s)	Yield (%)	Refs.
	CuSO4 or Cu(acetylacetonate)2, cyclohexane, 1% CH3OH, reflux	(36) CO ₂ CH ₃ +	(4) CO ₂ CH ₃	60
	Cu bronze, cyclobexane, reflux	S.	-	147
N ₂ CH	CuSO ₄ , hexane, reflux	\$	57	187
O CCCCHN	Cu powder, cyclohexane, reflux	d d d	29	56
	2 Cu bronze, cyclohexane, reflux CuSO ₄ , cyclohexane, reflux	H.	47 35	190 190
CHN2 T	Cu powder, tetrahydrofuran, reflux	Å	-	191
	Cu catalysis	R	65	118a
COCHN ₂	Cu, tetrahydrofuran, reflux	5°	73	118b
CHIN ₂ O	Di- $\mu$ -dichloro- $\pi$ -allylpalladium, (C ₂ H ₃ ) ₂ O, low temperature	à là	ca. 15	134
CHN ₂	CuSO4, cyclohexane, reflux	Å CH.	59	56

Reactant	Conditions	Product(s)	Yield (%)	Refs.
C ₁₂ (Contd) N ₂ SO ₂ C ₆ H ₅	π-Decane, 174°, 10 min	SO ₂ C ₆ H ₅	34	151a
COCHN2	Cu, rollux	() ()	8	1186
CHN ₂ C ₆ H ₅		C ₆ H ₅	64	29
OLC CHN2	Cu powder, cyclobexane reflux	· S	42	86, 17
N2CH CO2C2H	Is (PdCl/2, ether	CO ₂ C ₂ H ₃		192
N ₂ CH	Cu bronze, cyclohexane, reflux	of A.J.	-	80
N ₂ CH O	•	oth	80	81, 160
N ₂ CH 0	Cu bronze, cyclohexane, reflux	or A. J	-	82
CHN2	Cu, cyclohexane, reflux	(9:1)	7 44	84
i-C ₃ H ₇ CH	N ₂ Cu powder, cyclohexane, reflux	S CH-i	97	123

Reactant	Conditions	Product(s)	Yield (%)	Refs.
C ₁₂ (Contd.) CHIN ₂	· Cu powder, cyclohexane, reflux	OCC	85	86, 178
	Cu powder, cyclohexane, reflux	C2H5O2C + 5	48 20 ₂ C ₂ H ₅	193
	CuSO4, cyclohexane, reflux	C ₆ H ₅	30	56
C2H3O2C CHN2	(PdCl/2, ether	CO ₂ C ₂ H ₅	9	192
t-C ₄ H ₂ COCHN ₂	CuSO ₄ or Cu(acetylacetonate) ₂ , cyclohexane, 1% CH ₃ OH, reflux	1-C4H9 (26) CO2CH3	+ (39) + CO ₂ CI	H ₃ 60a
Cu. CHN2		Å		
$\langle \chi \rangle$	Cu		5	194
C ₆ H ₅ COCHN ₂	<ul> <li>Activated Cu₂O, cyclohexane, reflux</li> </ul>	CoH. Do	80	152
	Activated Cu ₂ O, cyclohexane, reflux		70	152
	CuSO4, cyclohexane, reflux		57	152
CHN ₂	Cu		-	194
( To	Cu powder, cyclohexane,	$\bigcap^{\circ}$	22	56

~~

Reactant	Conditions	Product(s)	Yield (%)	Refs.
C14 (Contd.) 0				
	IN ₂ Cu bronze, cyclohexane, reflux	ag	23	70
	Cu bronze, cyclohexane, reflux	ю "	40	74
CO2C2Hs	CuSO ₄ , toluene, reflux	CO ₂ C ₂ H ₅ + C	21 CO ₂ C ₂ H ₅	149
OSO ₂ C ₆ H ₃	n-Decane, 174°, 10 min	SO ₂ C ₆ H ₅	44.	151a
O SO ₂ C ₆ H ₅	n-Decane, 174°, 10 min	So ₂ C ₆ H ₅	10	151
COCHIN ₂	Cu catalysis	$\Delta $	-	62a
	Cu powder, CuSO ₄ , cyclohexane, reflux	$\langle \rangle$	47	62b
Сень	N ₂ Activated CuO, cyclohexane or cyclohexane/tetra- hydrofuran (7:3), hv	C ₆ H ₅	80	75
C ₆ H ₅ CHN ₂	CuSO4, cyclohexane, reflux	Gents H	(Very low)	56
C ₆ H ₅ CH	N ₂ Cu bronze, benzene	C6H3	80	195
	CuSO.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Y°	196

Reactant	Conditions	Product(s)	Yield (%)	Refs.
Cia (Contd.) OC ₄ H ₉ -t		OC4H9-t		
O CHN2	Cu bronze, cyclohexane, reflux	Ċ.	50	179
CT CH	IN ₂ Cu powder, cyclohexane, reflux		78	78
AcO O_CHIN ₂	Cu ₂ O, cyclohexane, reflux CuSO ₄ , cyclohexane, reflux	Aco	(Trace) (45-50)	78 78
Aco	Cu powder, cyclohexane, reflux	Aco	62	78
CH ₃ O	Cu powder, cyclohexane, reflux	CH ₃ O CH ₃ O	74	78
	Cu ₂ O, cyclohexane, reflux		(Traces)	78
0. CHN ₂	CuSO4, cyclohexane, reflux	•	(45–50)	76,7
сн,о	Cu powder, cyclohexane, reflux	CH ₃ O	42	78
Chigo	CuSO ₄ , cyclohexane, reflux	"	1.7	76
S.	CuSO _a , cyclohexane, reflux		60	61
	CuSO ₄ , cyclohexane, reflux		~~ -	197
	<ol> <li>CuSO₄, cyclohexane, reflux</li> <li>NaOH, CH₃OH, heat</li> </ol>	(2:1) +	15	198

Reactant	Conditions	Product(s)	Yield (%)	Refs.
Cia (Contd.)	Cu, benzene		40 	77
O CHN2	Cu, cyclohexane, reflux	(1:9) » +	" <u>31</u>	84
C ₂ H ₅ O ₂ C	Cu	C2H5O2C	16	118
	2 RdCl/2, ether		25	192
C CHN	2 CuSO4, cyclohexane, reflux	they	66	7,11,6
	Cu bronze, cyclohexane, reflux	-	55	8
CHN ₂	CuSO ₄ , cyclohexane, reflux	-E	65	u
CT CHN	2 Cu powder, CuSO4, cyclohe reflux		+ 6 84	10, 12
or CHN2	CuSO ₄ , cyclohexane, reflux	$\frac{1}{100}$ + $\frac{1}{100}$	₩ H O 78	199
	Cu powder, cyclohexane, rel	(3:5) hux " (1:1)	24	200
CHN2	CuSO ₄ , cyclohexane, reflux	¢p.	High	201
~	CuSO ₄ , n-hexane, reflux	~	-	202

Reactant	Conditions	Product(s)	Yield (%)	Refs.
Contd.)	N ₂ CuSO ₄ , Cu powder, cyclohexan reflux	•	42.5	47
C ₆ H ₅	Activated CuO, cyclohexane or cyclohexane-tetrahydrofuran, (7:3), hv	C ₆ H ₅ O	88	75
CC CH	Cu bronze, cyclohexane, reflux		40	70, 74
CHN ₂	$CuSO_4$ , cyclohexane, reflux		(15)	46
C,H ₇ -i	HN2 CuSO4, cyclohexane, reflux	C ₃ H ₇ ·i	8	203
N ₂ CH	Cu powder, tetrahydrofuran, reflux	i An	33	63, 64
CHN2	Cu powder, tetrahydrofuran		54	67,68
	CuSO ₄ , cyclohexane, reflux		10	69
C ₆ H ₅	Activated Cu ₂ O, cyclohexane, h reflux	V, C ₆ H ₅	88	152
p-CH3OC6H4	Activated Cu ₂ O, cyclohexane/ tetrahydrofuran (3:1), hv, reflux	p-CH3OC6H4	80	152
SO ₂ C ₆ H ₅	Cu, 80°, 10 hr, n-heptane	SO ₂ C ₆ H ₅	14	151a
	Cu, 174°, 10 min, n-decane Cu, 174°, 10 min, n-decane Cu(acetylacetonate) ₂ , 174°		19 21 22	151a 151a 151a

Reactant	Conditions	Product(s)	Yield (%)	Refs.
Cis Contd.)		and the second		
OSO2C6H4CH3-p		OSO2C6H4CH3-P		
$\square$	Cu(acetylacetonate)	Teo	54	151b
COCHN ₂	Contrast Grant and Contrast of			
$\sim$		10		
i-CH COCH	Eu powder, cyclohexane, reflux		38	153
Y		i-C3H7		
. 9			^ A /	
CHN.	Ou powder OutO andoberene	sofo '	F 1 50	10.4
	reflux	¥. +	Y. 39	12,0
		Ö (2.4:1)	8	
		(CH3)2CH(CH2)3		
$\cap$	CHN- Cu powder CuSO, cycloherane	M	10 Aug. 1	176
i-C3H7(CH2)3	reflux	Y.	-	170
	3	0	HA.C.H.J	
		F	2303.17	
		+ 🗸	٨.	
		ő	e e e e e e e e e e e e e e e e e e e	
		(1:1)		
16				
CoHs		CeHs		
CHIN ₂	CuCl, cyclohexane		>70	204
~Y		Ö		
Š				
0_0		$\overline{\mathbf{v}}$		
$\sim$	Bis(N-n-propylsalicylidene-	$\widehat{\mathbf{S}}$	45	13
Š	Bis(N-n-propylsalicylidene- aminate) Cu(II), cyclohexane, 75-80°	So A	45	13
Ž	Bis(N-n-propylsalicylidene- aminate) Cu(II), cyclohexane, 75-80°	S.	45	13
N2	Bis(N-n-propylsalicylidene- aminate) Cu(II), cyclohexane, 75–80°	S.	45	13
	Bis(N-n-propylsalicylidene- aminate) Cu(II), cyclohexane, 75–80°	P-CH.OC.H.	45	13
P-CH ₃ OC ₆ H ₄	Bis(N-n-propylsalicylidene- aminate) Cu(II), cyclohexane, 75-80°	P-CH3OC6H4	45 87	13
P-CH ₃ OC ₆ H ₄	Bis(N-n-propylsalicylidene- aminate) Cu(II), cyclohexane, 75-80° Activated Cu ₂ O, cyclohexane tetrahydrofuran (3:1), hv, reflu	p-CH ₃ OC ₆ H ₄	45 87	13
P-CH ₃ OC ₆ H ₄	Bis(N-n-propylsalicylidene- aminate) Cu(II), cyclohexane, 75-80° Activated Cu ₂ O, cyclohexane tetrahydrofuran (3:1), hv, reflu	P-CH ₃ OC ₆ H ₄ t	45 87	13 152
P-CH ₃ OC ₆ H ₄	Bis(N-n-propylsalicylidene- aminate) Cu(II), cyclohexane, 75-80° Activated Cu ₂ O, cyclohexane tetrahydrofuran (3:1), hu, reflu	x x	45 87 27	13 152 72
P-CH ₃ OC ₆ H ₄ CH ₃ O	Bis(N-n-propylsalicylidene- aminate) Cu(II), cyclohexane, 75-80° Activated Cu ₂ O, cyclohexane tetrahydrofuran (3:1), hv, reflu	x cH ₃ OC ₆ H ₄ CH ₃ OC ₆ H ₆	45 87 27	13 152 72
P-CH ₃ OC ₆ H ₄ CH ₃ O	Bis(N-n-propylsalicylidene- aminate) Cu(II), cyclohexane, 75-80° Activated Cu ₂ O, cyclohexane tetrahydrofuran (3:1), hv, reflu CCHN ₂ CuSO ₄ , tetrahydrofuran, reflux	p-CH ₃ OC ₆ H ₄ CH ₃ OC ₆ H ₄ CH ₃ O	45 87 27 24	13 152 72 72
P-CH ₃ OC ₆ H ₄ CH ₃ O	Bis(N-n-propylsalicylidene- aminate) Cu(II), cyclohexane, 75-80° Activated Cu ₂ O, cyclohexane tetrahydrofuran (3:1), hv, reflu CCHN ₂ CuSO ₄ , tetrahydrofuran, reflux Cu bronze, cyclohexane, reflux	P-CH ₃ OC ₆ H ₄ CH ₃ OC ₆ H ₄ CH ₃ O CH ₃ O	45 87 27 24 50	13 152 72 72 75
P-CH ₃ OC ₆ H ₄ CH ₃ O	Bis(N-n-propylsalicylidene- aminate) Cu(II), cyclohexane, 75-80° Activated Cu ₂ O, cyclohexane tetrahydrofuran (3:1), hv, reflu OCHN ₂ CuSO ₄ , tetrahydrofuran, reflux Cu bronze, cyclohexane, reflux Activated CuO, cyclohexane or cyclohexane : tetrahydrofuran	v v v v v v v v v v v v v v	45 87 27 24 50	13 152 72 72 75

TABLE I. INTRAMOLECULAR ADDITION OF DIAZOKETONES TO OLEFINS (Continued)

Reactant	Conditions	Product(s)	Yield (%)	Refs.
C ₁₆ (Contd.)				
CoCHN ₂	Activated Cu ₂ O, hv, cyclohe tetrahydrofuran	stane:	=	154
CO CH	IN ₂ Cu bronze, cyclohexane, ref		51	71, 72
	) Activated CuO, cyclohexanc cyclohexanc-tetrahydrofu N ₂ (7:3), hν	an COC	59	75
CH ₃ O CHN ₂	CuSO ₄ , n-hexane, reflux	CH40	65	205
OCHN2	H ₃ Cu bronze, cyclohexane, refi		8	83a
N ₂ CH O	OCH ₃ Cu bronze, cyclohexane, ref			83a
CH ₃ CO ₂	-COCHN ₂ Cu, benzene, reflux H	CH ₃ , CH ₃ CO ₂	61	83b
СН ₃ СО2-СН, сн3СО2-СДХ	COCHN ₂ Cu, benzene, reflux H	CH ₃ .	40	83b
C ₆ H ₃ CHN ₂	Tetrahydrofuran, hv	C ₆ H ₅ C ₆ H ₅	10-15	42, 43

Reactant	Conditions	Product(s)	Yield (%)	Refs.
C ₁₇ (Contd.) O ₂ CHN ₂				
050	CuCl, cyclohexane, reflux or Cu powder, benzene, reflux		30	206
C ₂ H ₅ O ₂ C CO ₂ C ₂ H ₅	CuSO ₄ , benzene, reflux	C2H3O2C CO2C2H3	44	149
CHN ₂	Cu		÷	4
C ₆ H ₅ C ₆ H ₅ CHN ₂	Cu bronze, cyclohexane, reflux		÷	58
Br CHN ₂	Cu, cyclohexane, reflux	Br	ca. 50	3
CHIN ₂	Activated CuO, cyclohexane or cyclohexane:tetrahydrofuran (7:3), hv		63	75
CH ₃ O	Activated CuO, cyclohexane or cyclohexane : tetrahydrofuran (7:3), hv	сн,0	76	75
CH40	HN ₂ Activated CuO, cyclohexane or cyclohexane:tetrahydrofuran (7:3), hv	сн,о	72	75
ß	Cu bronze, cyclohexane, reflux	- 8	41	72
N ₂ CH CO ₂ CH ₃	Cu bronze, cyclohexane, reflux	CO2CH3	35	74
C18 C2H4		<u>^</u>		
C ₆ H ₅	Съ	C.H.		207

Reactant	Conditions	Product(s)	Tield (%)	Reis.
(Contd.)		0		
	HN ₂		15	208
сн,о	Activated Cu ₂ O, cyclohexane: tetrahydrofuran, hv	сн _а о	50	155
сн,о	CHN ₂ Activated CuO, cyclohexane or cyclohexane: tetrahydrofuran (7:3), hv	сн _з о	87	75
0	Cu bronze, cyclohexane, reflux	г от	55	72
N ₂ CH O	Cu powder, benzene, reflux		2	209
CO ₂ CH ₃	CuSO4, cyclohexane, reflux	H CO ₂ CH ₃		14
$C_{21}$ OCOC OCOC H H H H H H H H	H ₃ Cu powder, cyclohexane, reflux	OCOCH H H H	3 46	156
C ₆ H ₅ C ₆ H ₅ C ₆ H ₅	Cu powder, benzene, reflux	C ₆ H ₅ C ₆ H ₅	57	143,
COCHN ₂	CuSO ₄ , cyclohexane, reflux	C ₉ H ₁₁ COO	58	a



TABLE I. INTRAMOLECULAR ADDITION OF DIAZOKETONES TO OLEFINS (Continued)

Note: References 145-230 are on pp. 474-475.

leactant	Conditions	Product(s)	Yield (%)	Refs.
o CHN		0		
	CuSO ₄ , cyclohexane, reflux	2	37	35
	CuCl ₂ , cyclohexane, reflux		34	35
	CuCl, cyclohexane, reflux		28	35
	Cu powder, cyclohexane, reflux CH ₃ CHC ₆ H ₅	0.	38	35
		à.	42	29
	С,н,снсн,	9,		
	Cu powder, n-octane, reflux	2	50	89,
	Cu dust, benzene, reflux		40-70	211
of CHN2	Cu dust, benzene, reflux	$\sim$	30	211
CHN ₂	Cu ₂ O, cyclohexane, reflux	~	39	91

TABLE II. INTRAMOLECULAR ADDITION OF DIAZOESTERS TO OLEFINS

Reactant	Conditions	Product(s)	Yield (%)	Refs.
C,		<i>.</i>		
O N2	Cu powder, n-octane, reflux	57-8	30	89,9
CHN ₂	Cu or CuBr	5	50	89, 9
Loto	Cu powder, n-octane, reflux	57	50	89,9
CO ₂ C ₂ H ₅	Cu powder, n-octane, reflux	$A - CO_2C_2H_5$	55	89
CO ₂ CH ₃	CuSO4. benzene, reflux	√2CO₂CH₃ 0	69	145
c. Affo	Cu powder, n-octane,	J.L	30	89,5
J N2	reflux Cu powder, n-octane, reflux	Xolo [X.L]	-	89
$O^{*} \prod_{N_{2}} O^{*}$	CuSO4, benzene, reflux	CO2CH3	58	150
CO ₂ CH ₃	CuSO ₄ , benzene, reflux	Ссо₂сн,	60	150
C ₁₀		CO3CH3		

Reactant	Conditions	Product(s)	Yield (%)	Refs.
(Contd.) $N_2$ $CO_2C_2H_5$ $CO_2C_2H_5$	Cu powder, n-octane, reflux		50	89
N ₂ CO ₂ C ₂ H ₅	Cu powder, π-octane, reflux	CO2C2H5	50	89
Сп	Cu powder, n-octane, reflux, or benzene, 130°		20	92, 5
CH ₃	Cu, n-octane, reflux	CO2CH3 CH3	67	212
CH2OH	Cu, n-octane, reflux	со ₂ сн Сн ₂ он	52	212
	H ₃ CuSO4, benzene, reflux	CO ₂ CH ₃	64	150
N ₂ CH O	Cu ₂ O, cyclohexane, reflux	Å	21	91
	Cu powder, n-octane, reflux	CO ₂ CH ₃	19	92, 9
(CH ₃ ) ₂ C=CH(CH ₂ ) ₂	Cu(>10 eq), cyclohexane, reflux	H ^H H	27. D	148
	Cu ₂ O(>10 eq), Cu(acac) ₂ (>10 eq), toluene, reflux Cu(acac) ₂ (<0.1 eq),		33 22 76	148 148 148

TABLE II.	INTRAMOLECULAR ADDITION OF DIAZOESTERS TO OLEFINS (Continued)	

Reactant	Conditions	Product(s)	Yield (%)	Refs.
C ₁₂ (Contd.) CH ₃ O	Cu powder, n-octane, reflux CO ₂ CH ₃	CH ₃ O CO ₂ CH ₃	60	92, 93a
N ₂ CH O	Cu ₂ O, cyclohexane, reflux	ŝ	<23	91, 211
	(CH3O)3P·CuI, toluene, reflux	CO ₂ C ₂ H ₅	72	97
CO ₂ CO ₂ CH ₃	(CH ₃ O) ₃ P·CuI, toluene, reflux	CO ₂ CH ₃	70	97
$C_{13}$	Cu, Cu2O, CuSO4, toluene, reflux	0	_	213
Co ₂ CH,	Cu powder, octane, reflux	CO2CH3	45	92, 93a
CH ₃ O ₂ C	CH ₃ Cu(acetylacetonate) ₂ , toluene, reflux	OCH ₃ O H CO ₂ CH ₃	71	93b
C14				
N ₂	Cu powder, xylenc, reflux	C ₅ H ₉ O ₂ O CO ₂ CH ₃	.50	95

TABLE II. INTRAMOLECULAR ADDITION OF DIAZOESTERS TO OLEFINS (Continued)



Note: References 145-230 are on pp. 474-475.

Reactant		Conditions	Product(s)		Yield (%)	Refs.
C.				Q		
(C₂)	H _s ) ₂ NCOCHN ₂	Dioxane, hv		-N (57) C,H.		35, 36
		Methanol, hv Cyclopentane, hv Ethyl acetate, hv Methylene chloride, hv Acetone, hv Acetonitile, hv Cyclopentane-methanol (9: 1), hv Dioxane, LiBr (1%), hv	·· (5) ·· (47) ·· (37) ·· (38) ·· (40) ·· (31) ·· (19) ·· (34)	$\begin{array}{cccc} + & & & & (43) \\ + & & & & (53) \\ + & & & & (63) \\ + & & & & (62) \\ + & & & & (60) \\ + & & & & (69) \\ + & & & & (81) \\ + & & & & (66) \end{array}$		35, 36 36 36 36 36 36 36 36 36 36
0	C ₄ H ₉ -1 CHN ₂	Acetone, LiBr (3.5%), hv Cyclohexane, hv	·· (13)	+ ** (87)	(ca, 4)	36 37
G L	A po	Cu powder, benzene, reflux	Do	(60)		85
C		CuSO ₄ , cyclohexane, reflux	oA		æ	105
N ₂ :	$\leq CO_2C_2H_5$ $CO_2C_2H_5$	$C_{s}H_{5}$ $C_{6}H_{5}$ , cyclohexane, hv			-	215
$\langle$		CH2Cl2, hv	ALC NO		-	50
0		Cyclohexane, hv	° (<2) + °	[−] √ (<2)		38
c l	f.	Cu powder, benzene, reflux	Lo		5	102
٢		Dioxane, hu	FN)		23	37
T		Petroleum ether (60-90°), CuO,	$\frown$		31	108

#### TABLE III. INTRAMOLECULAR INSERTION OF DIAZOCARBONYL COMPOUNDS INTO C-H BONDS

	Conditions	Product(s)	Yield (%)	Refs.
onid.)				
CHN2 CHN2	CuSO4, cyclohexane, reflux	(19) ⁺ (1)(3)		105
		CO2CH3		
CO2CH3	Cu powder or Cu salts, benzene, reflux	toto	14-30	39
	Cu powder or Cu salts, chlorobenzene, reflux		62	39
	Freon, tetrahydrofuran, hv		Trace	114
	OCL, hv		Trace	114
	Benzene, 140°		4	114
	Cu, n-octane, 120°		Trace	114
	CuCN, benzene, 140°		14	114
	Cu, benzene, 140"		30	114
	Cu, chiorobenzene, 131-		02	114
N ₂		CO ₂ CH ₃		
r-C4H20 CO2CH3	CuSO ₄ , chlorobenzene, reflux	L	11	39
0		10.0		
	Cu powder, chlorobenzene, reflux		11	114
	CClan hu		10	114
I-C.H. CO.C.H.		V		
Acologia	Curlosentese bu	X CO CH	25	1220
N.	effetepentanet nr			1520
C ₂ H ₅ O ₂ C	CCI., hu	IN	-	51
N2		o f		
N ₂ CH 0	Silver bernate (CH) N		8	216
t	CH ₃ OH, heat	12		
	CuSO ₄ , cyclohexane	u .	48	216
O CHN2		9	1	
	CuSO ₄ , cyclohexane, reflux	(2) +	(26)	216
(D)			1	
$\sum_{i=1}^{n}$	CuO, petroleum ether (60-90°),		52	108
	CuO, petroleum ether (60-90°), heat		52	108
	CuO, petroleum ether (60-90°), heat	CH+CO ₂ CH ₃	52 47.5°	108
	CuO, petroleum ether (60-90°), heat CuSO4, chlorobenzene, reflux	$C_{2}H_{5} + C_{0}CO_{2}CH_{3}$	52 47.5°	108 39
$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	CuO, petroleum ether (60-90°), heat CuSO4, chlorobenzene, reflux	$C_{2}H_{5} \downarrow C_{0}^{CO_{2}CH_{3}}$	52 47.5°	108 39
$C_{2}H_{3}$	CuO, petroleum ether (60-90°), heat CuSO4, chlorobenzene, reflux Cu or CuSO4, chlorobenzene,	$C_{2}H_{5} \downarrow C_{0}CO_{2}CH_{3}$	52 47,5° 32	108 39 114

THE III III III III CONTRACTOR AND	TABLE III.	INTRAMOLECULAR	INSERTION OF	DIAZOCARBONYL	COMPOUNDS INTO	C-H BONDS	(Continued)
------------------------------------------------------------------------	------------	----------------	--------------	---------------	----------------	-----------	-------------

Reactant	Conditions	Product(s)	Yield (%) Refs.
C, (Contd.)		ø	
CHN ₂	Ag ₂ O, methanol	R	6 105
	CuSO ₄ , cyclohexane, reflux		62 105
C.o	Cu, ethanol	X.	91 101
N ₂	Cu, cyclohexene		94 101
	CuSO ₄ , chlorobenzene, reflux	$\bigcup_{H}^{H} \bigcup_{0}^{CO_2CH_3} (5) + \left[ \bigcup_{H}^{CO_2CH_3} (5) + \bigcup_{0}^{CO_2CH_3} (5) + \bigcup_{0}^{$	CO ₂ CH ₃ (ca. 30) 39
$C_2H_5O_2C$ $N_2$ $N$	CCI.e. hv	C ₂ H ₅ O ₂ C, H N (ca. 55)	55
C ₂ H ₅ O ₂ C N ₂ N	CC3a, hu	$C_2H_3O_2C$ $H_1$ $C_2H_3O_2C$ + $C_2H_3O_2C$ + (1:2)	2C. H N 80 51
	CuSO4, cyclohexane, reflux	(72) + ( ¹ )	(9) 105
	N ₂ Silver benzoate, (C ₂ H ₅ ) ₃ N, methanol	(2:1)	- 107
	CuO, petroleum ether (60–90°), heat	H H H	13 108
	l2 CuSO4, cyclohexane, reflux	(58) + L	(22) 216
COCI	fN ₂ Silver benzoate, (C ₂ H ₃ ) ₃ N,	F	40 216
	CuSO ₄ , cyclohexane, heat		67 216

# TABLE III. INTRAMOLECULAR INSERTION OF DIAZOCARBONYL COMPOUNDS INTO C-H BONDS (Continued)

Reactant	Conditions	Product(s)	Yield (%)	Refs.
C _{in}		Δ		
H COCHN ₂	Cu, toluene, reflux	A.	51	217a
COCHN ₂	CuSO ₄ , toluene, reflux	A	74	217ь
COCHN ₂	Cu, toluene, reflux		59	217a
	Silver benzoate, (C ₂ H ₃ ) ₃ N, methanol			104
1-C4H9O2C	CCl4, hv	STN >	÷	51
$C_{12}$ $C_6H_5$ $N_2$ $N_2$ $N_2$	Methylene chloride, hv		-	50
CHIN ₂	Ca powder, benzene		12	218
^{1-C₄H₉O₂C N₂ N}	CCla. hv	1-C4H3O2C	14	51
I-CeHa	HN ₂ CuSO4, cyclobexane, heat	I-C4Ho	16	216

TABLE III.	INTRAMOLECULAR INSERTION OF DIAZOCARBONYL COMPOUNDS INTO C-H BONDS (Continued)

Reactant	Conditions	Product(s)	Yield (%)	Refs.
C ₁₂ (Contd.)	CHN.			
r-C ₄ H ₉	CuSO4, cyclohexane, heat	t-C ₄ H ₆ (51)	+ (7) t-C ₄ H ₉	216
C ₁₃ m-O ₂ NC ₆ H ₄ √	Dioxane, reflux	m-O ₂ NC ₆ H ₄ H	32	50
		0~~~~		
C ₆ H ₅	CuSO ₄ , chlorobenzene, reflux ₂ CH ₃	C ₆ H ₅	8.5	114
N2 N2	Dioxane, reflux	C ₆ H ₅ H O	39.5	50
	Methylene chloride, hv or heat	8	50	49
D	CUSO, or CuO, toluene, reflux		70–80	103
C ₃₄ SO ₂ C ₆ H	5 n-Decane, 174°, 10 min	SO ₂ C ₆ H ₅	12	151
C ₁₅ SO ₂ C ₆ H	s Cu, 80°, 10 hr, n-heptane	SO2C6H3	26	151
	Cu, 174°, 10 min, n-decane n-Decane, 174°, 10 min Cu(acetylacetonate) ₂ , 174°, 10 min n-decane		12 13 23	151a 151a 151a
N2 N CO2CH3	Methylene chloride, 10°, hv (also thermal)		-	49

### TABLE III. INTRAMOLECULAR INSERTION OF DIAZOCARBONYL COMPOUNDS INTO C-H BONDS (Continued)

Product(s)	Yield (%)	Refs.
C ₆ H ₅ H +C	55-60	113
(9:2) (9:2)	65-70	113
+ 5	C6H4OCH3-P 58-60	113
(9:2)	75	113
¢.	55	113, 21
ñ	54	111, 21
A.	53	m
	52.5 58	220 220
A	23	220
1-C4H402C	+ HCH	51
	$ \begin{array}{c}                                     $	$ \begin{array}{c}                                     $

TABLE III. INTRAMOLECULAR INSERTION OF DIAZOCARBONYL COMPOUNDS INTO C-H BONDS (Continued)



#### TABLE III. INTRAMOLECULAR INSERTION OF DIAZOCARBONYL COMPOUNDS INTO C-H BONDS (Continued)



TABLE III. INTRAMOLECULAR INSERTION OF DIAZOCARBONYL COMPOUNDS INTO C-H BONDS (Continued)

* Insertion occurs with retention of configuration.

Note: References 145-230 are on pp. 474-475.

Reactant	Conditions	Product(s)	Yield (%)	Ret
Cs O		8		
CHN2	1. BF ₃ · (C ₂ H ₅ ) ₂ O, CH ₃ NO ₂ 2. 10% aq HCl, reflux	$\bigcirc$	13	131
	1. BF ₃ - (C ₃ H ₃ ) ₂ O, CH ₃ NO ₂ 2. 10% aq HCl, reflux	Ŝ	4065	131
C,	HClO4, dioxane-H2O (3:2)	норо	60	117
CHIN ₂	<ol> <li>BF₃ · (C₂H₃)₂O, CH₃NO₂</li> <li>10% aq HO, reflux</li> </ol>	↓Ď	40-65	131
Ca CHN ₂	AcOH, 40°		7080	129
-C-CH2	HCIO4, dioxane-H2O (3:2)	HOLLO	90	117
	Glacial acetic acid	J.	49	221
HO CHN ₂	$BF_3 \cdot (C_2H_3)_2O, CH_3NO_2$	HO	56	122
CHN ₂	HClO ₄ , dioxane-H ₂ O(3:2)	A S	100	117
COCHN ₂	1.1 N Hydrochloric acid, 3 hr, 25°		86.5	222
- OCH3	Glacial acetic acid, ether $Ag_2O$	r P N	75 (—)	137 223
		A		

TABLE IV. ACID-CATALYZED CYCLIZATIONS OF DIAZOKETONES

Reactant	Conditions	Product(s)	Yield (%)	Refs.
Co (Conid.)		•		
	HClO4, dioxane-H2O (3:2)	HOLO	100	117
	1. BF ₃ - (C ₂ H ₃ ) ₂ O, CH ₃ NO ₂ 2. 10% aq HCl, reflux		50-68	130
COCHN ₂ OCH ₃	Glacial acetic acid, 50°, 10% H ₂ SO ₄		()	137
c	Formic acid, 0-5°		()	223
HOLOC	BF ₃ - (C ₂ H ₃ ) ₂ O, CH ₃ NO ₂ HN ₂	0 C C D=0	67	122
CH ₂ COCHN ₂ OCH ₃	Sulfuric acid, ether	CCC °		224
	Sulfuric acid, dioxane BF ₃ , ether		15 35	224 224
C2H3C=C	CHN ₂ 1. BF ₃ · (C ₂ H ₃ ) ₃ O, CH ₃ NO ₃ 2. 10% aq HCl, reflux	C2H3C=C	40-65	131
	CF3CO2H	CC CCH.	20	127
OTT COCHN	50% Formic acid or dilute alcoholic H ₂ SO ₄	STZ ?	35	225
HO	CHN ₂ $BF_3 \cdot (C_2H_3)_2O, CH_3NO_2$	∘=(_)	41	122
CHN2	BF ₃ · (C ₂ H ₃ ) ₂ O, CICH ₂ CH ₂ CI	(56) +		118a
~×~	1. BF ₃ · (C ₂ H ₅ ) ₂ O, CH ₃ NO ₂	rt=0	50-68	130

TABLE IV. ACID-CATALYZED CYCLIZATIONS OF DIAZOKETONES (CO	Continued)	i
-----------------------------------------------------------	------------	---

Reactant	Conditions	Product(s)	Yield (%)	Refs.
C _{i1} (Contd.)				
n-C ₅ H ₁₁	J ₂ 1. BF ₃ · (C ₂ H ₃ ) ₂ O, CH ₂ 2. 10% aq HCI, reflux	n-C ₅ H ₁₁	40-65	131
	HN2 HBF4, CH3NO2		70-74	119, 1
но	CF3CO2H, -20°		100	119, 1
COCHE	HCl, ethanol, heat		64	226
C ₆ H ₅ CH ₃ CCH ₃ COCHN ₂	Glacial acetic acid	C ₆ H ₅ CH ₃	( <del>)</del>	227
	HCI, methanol		( <del>~)</del>	227
O_CHN2	BF ₃ · (C ₂ H ₃ ) ₂ O, CH ₃ NO temperature	a, room	32	120
	CF3CO2H		48	126
	CF3CO2H, CH2Cl2, 0°	$\mathcal{A}$	96	127
HOLDE	HN2 CF3CO3H, CH2Cl2, 0°	J.	74	127
- CHN	2 BF ₃ · (C ₂ H ₃ ) ₂ O, CH ₃ N	0 ₂ ,0 ⁶ (80) + ~	(20)	123
Xeo				

Reactant	Conditions	Product(s)	Yield (%) Refs.
C ₁₃			
СН,0	№2 С <b>F</b> 3CO3H		86 119, 12
CH ₃ O CHN ₂	CF3CO2H, CH2Cl22	or CH30 (33) + 0	126
CH ₃ O CHN	2 CF3CO2H, CH2Cl2, -2/	r ofte	58 126
C14 C2H5O2C	BF₃ · (C₂H₃)₂O, ClCH₂	CH ₂ CI C ₂ H ₅ O ₂ C C ₂ H (30) +	(3) 118
C6H5 COCHN2	BF ₃ · (C₂H _s )₂O, CH₂Cl₂	C ₆ H ₅	74 152
	50% aq HBF4, CH3NO	$C_{6}H_{5}$ (30) + $C_{6}H_{5}$	H ₅ (21) 152
COCHN ₂	10% H ₂ SO ₄ solution in acid	acetic	80 115
	BF ₃ · (C ₂ H ₃ ) ₂ O, CH ₃ NO	· CHS	21 121
COCH	N ₂ Aq HCl, 0-5°	o Color	61.5 228

TABLE IV. ACID-CATALYZED CYCLIZATIONS OF DIAZOKETONES (Continued)


TABLE IV. ACID-CATALYZED CYCLIZATIONS OF DIAZOKETONES (Continued)



TABLE IV. ACID-CATALYZED CYCLIZATIONS OF DIAZOKETONES (Continued)

Reactant	Conditions	Product(s)	Yield (%)	Refs
CH-O	O CHN ₂ BF ₃ · (C ₂ H ₃ ) ₂ O, CH ₂ Cl ₂		41	72
CHN ₂	CF3CO2H, 0°	он он	100	124
	10% Soln H ₂ SO ₄ in acer room temp	ic acid,	()	116
сн ₃ 0-65	$\int \frac{\text{COCHN}_2}{\text{BF}_3 \cdot (C_3H_3)_2O_1 \text{ CH}_2C_2}$	сн,о-ССС-О	50	155
N ₂ CH	H₃ 70% Aq HClO₄ or 57%	HI, CHCI ₃	50-70	128
	OCOCF ₃ CHN ₂ O 1. CF ₃ CO ₂ H, 0 ^o	,OH	60.	124
CH ₃ O	2. Hydrolysis	СН ₃ 0		
	OCHN2 OH Phosphoric acid, dioxan	HO	()	229
HO	COCHN ₂ - N Glacial acetic acid, 25°	HO	78	230
AJ	COCHIN ₂ -N Glacial acetic acid, heat	age to	N 82	230

TABLE IV	ACID-CATALYZED CYCLE	ATTONS OF DIAZOKETONES	(Continued)
INDLL IV.	ACID CATALIZED CICLIC	ATTOMS OF DIAZOKETONES	(Continued)

Note: References 145-230 are on pp. 474-475.

Reactant	Conditions	Product(s)	Yield (%)	Refs
C ₈				
CHN ₂		$\sim$		
ON	Dioxane, hv	LNZ	77	37
$\sim$		~ 8		
N ₂		$\bigvee$	ie.	120
CO2C2H5	Cyclopentane, hv	CO.C.H.	05	132
C.		0070245		
COCUN		Ŷ		
(COCHIN ₂		$\sim$	Δ	
A	Acetone, 1 N H ₂ SO ₄ (4:1 v/v)	+	OH	132
		HO	K	
		đ		
		(47)	(28)	
			0	
			Ĭ.	
		+	A	
			AI	
			(25)	
A				
AT	Acetone, 1 N H ₂ SO ₄ (4:1 v/v)	(3) (3)	23) (1)	132
COCHN				
Cuchin ₂				
N		N		
10		10	\$3	1.0
A C	Chi bronza banyana raffuy		33	10
	Cu bronze, benzene, reflux	A	33	10
N ₂	Cu bronze, benzene, reflux	A	434	10
N ₂	Cu bronze, benzene, rettux Cyclohexene, 130°		+- 43ª	10
с _п	Cu bronze, benzene, rettux Cyclohexene, 130°			10
	Cu bronze, benzene, rettux Cyclohexene, 130°	R.		10
C ₁₁ N ₂ N ₂ CHN ₂	Cu bronze, benzene, rettux Cyclohexene, 130° CuSO4, dioxane, 100°	K K K K K K K K K K K K K K K K K K K		10 10 133
C ₁₁ N ₂ N ₂ CH CHN ₂	Cu bronze, benzene, reflux Cyclohexene, 130° CuSO4, dioxane, 100°			10 10
$C_{11}$ $N_2$ $N_2$ $N_2$ $CHN_2$ $N_2$ $CHN_2$	Cu bronze, benzene, rettux Cyclohexene, 130° CuSO ₄ , dioxane, 100° Di-μ-dichloro-π-allyl-			10 10 133
C ₁₁ N ₂ C ₁₁ N ₂ CHN ₂	Cu bronze, benzene, reflux Cyclohexene, 130° CuSO ₄ , dioxane, 100° Di-μ-dichloro-π-allyl- palladium, (C ₂ H ₃ ) ₂ O, 5-15° Di-μ-dichloro-π-allyl-	(2:1)		10 10 133 133
$C_{11}$ $N_2$ $N_2$ $N_2$ $CHN_2$ $N_2$ $CHN_2$	Cu bronze, benzene, reflux Cyclohexene, 130° CuSO ₄ , dioxane, 100° Di-μ-dichloro-π-allyl- palladium, (C ₂ H ₅ ) ₂ O, 5-15° Di-μ-dichloro-π-allyl- palladium, tetrahydrofuran,	$ \begin{array}{c}  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & &$		10 10 133 133
C ₁₁ N ₂ C ₁₁ N ₂ CH CHN ₂	Cu bronze, benzene, rettux Cyclohexene, 130° CuSO ₄ , dioxane, 100° Di-μ-dichloro-π-allyl- palladium, (C ₂ H ₃ ) ₂ O, 5-15° Di-μ-dichloro-π-allyl- palladium, tetrahydrofuran, 5-15° Di-μ-dichloro-π-allyl-	(2:1) (2:1) (6: (6:		10 101 133 133 133
$C_{11}$ $N_2$ $N_2$ $N_2$ $CHN_2$ $N_2$ $CHN_2$	Cu bronze, benzene, rettux Cyclohexene, $130^{\circ}$ CuSO ₄ , dioxane, $100^{\circ}$ Di- $\mu$ -dichloro- $\pi$ -allyl- palladium, (C ₂ H ₅ ) ₂ O, 5-15° Di- $\mu$ -dichloro- $\pi$ -allyl- palladium, tetrahydrofuran, 5-15° Di- $\mu$ -dichloro- $\pi$ -allyl- palladium, dioxane, 5-15°	$ \begin{array}{c}  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & &$		101 101 133 133 133

TABLE V. MISCELLANEOUS REACTIONS

Reactant	Conditions	Product(s)	Yield (%)	Re
512				
N2CH CHN2	Di-µ-dichloro-π-allyl- palladium, (C ₂ H ₅ ) ₂ O, low temp	2.J	20	13
COCHN ₂	Cu powder, DMSO, room ten		ā.	21
	Di-μ-dichloro-π-allyl- palladium, (C ₂ H ₃ ) ₂ O, low temp	ZZ.	15	13
CO2CH3 CHN2	Cul, tetrahydrofuran, 35°	La foi coso	50 H ₃	4
	Cu(acac)2, tetrañydrofuran, reflux IN2	C ₆ H ₅ CH ₂ CONH	5× 90	13
C ₆ H ₅ OCH ₂ CONH H H S N CON	Cu(acac) ₂ , tetrahydrofuran, reflux CHN ₂	C ₆ H ₅ OCH ₂ CONH	S × 80	13
COCHN2	Cu(acac)2, tetrahydrofuran, reflux	JN SX	43	13
$C_{a1}$ $C_{6}H_{5}CH_{2}$ H H H H H H H N $N_{2}$ N	OCH ₂ C ₆ H ₅ Rhodium acetate, benzene, 3 hr	C ₆ H ₅ CH ₂ CONH H H	20	13:

TABLE V. MISCELLANEOUS REACTIONS (Continued)

" No norcarane derivative was formed.

Note: References 145-230 are on pp. 474-475.

## 6. Acknowledgment

We thank Mrs. Barbara Hunt for typing the manuscript.

- 1. G. Stork and J. Ficini, J. Am. Chem. Soc., 83, 4678 (1961).
- W. von E. Doering, B. M. Ferrier, E. T. Fossel, J. H. Hartenstein, M. Jones, Jr., G. Klumpp, R. M. Rubin, and M. Saunders, Tetrahedron, 23, 3943 (1967).
- 3. M. Tichý, Tetrahedron Lett., 1972, 2001.
- 4. E. Vogel, A. Vogel, H.-K. Kübbeler, and W. Sturm, Angew. Chem., Int. Ed. Engl., **9**, 514 (1970).
- 5. E. Vogel and H. Reel, J. Am. Chem. Soc., 94, 4388 (1972).
- O. P. Vig, M. S. Bhatia, K. C. Gupta, and K. L. Matta, J. Indian Chem. Soc., 46, 991 (1969).
- 7. J. J. Plattner, U. T. Bhalerao, and H. Rapoport, J. Am. Chem. Soc., **91**, 4933 (1969).
- 8. P. A. Grieco, J. Am. Chem. Soc., 91, 5660 (1969).
- E. J. Corey, K. Achiwa, and J. A. Katzenellenbogen, J. Am. Chem. Soc., 91, 4318 (1969).
- 10. K. Mori and M. Matsui, Tetrahedron Lett., 1969, 4435.
- 11. U. T. Bhalerao, J. J. Plattner, and H. Rapoport, J. Am. Chem. Soc., **92**, 3429 (1970).
- 12. K. Mori and M. Matsui, Tetrahedron, 26, 2801 (1970).
- 13. J. D. White, S. Torii, and J. Nogami, Tetrahedron Lett., 1974, 2879.
- 14. A. Tahara, M. Shimagaki, S. Ohara, and T. Nakata, Tetrahedron Lett., **1973**, 1701.
- For example, (a) S. Masamune, J. Am. Chem. Soc., 86, 735 (1964): (b)
   W. von E. Doering and M. Pomerantz, Tetrahedron Lett., 1964, 961.
- 16. V. Dave and E. W. Warnhoff, Org. Reactions, 18, 217 (1970).
- 17. W. Kirmse, Prog. Org. Chem., 6, 164 (1964).
- 18. W. Kirmse, Carbene Chemistry, Academic Press, New York, 1971.
- 19. M. Jones, Jr. and R. A. Moss, *Carbenes*, Wiley, New York, 1973.
- (a) B. Capon, M. J. Perkins, and C. W. Rees, Organic Reaction Mechanisms—1966, Interscience, New York, 1967, p. 279. (b) B. Capon and C. W. Rees, Organic Reaction Mechanisms—1970, Interscience, New York, 1971, p. 391, (c) R. A. Butler and M. J. Perkins, Organic Reaction Mechanisms—1973, Interscience, New York, 1975, p. 203.
- 21. H. Meier and K.-P. Zeller, Angew. Chem., Int. Ed. Engl., 7, 32 (1975).
- 22. (a) J. Font, J. Valls, and F. Serratosa, Tetrahedron, **30**, 455 (1974); (b) J. Font, F. Serratosa, and J. Valls, Chem. Commun., **1970**, 721.
- 23. J. Font, F. López, and F. Serratosa, Tetrahedron Lett., 1972, 2589.
- 24. T. L. Burkoth, Tetrahedron Lett., **1969**, 5049.
- 25. G. Stork and R. P. Szajewski, J. Am. Chem. Soc., 96, 5787 (1974).

- 26. W. R. Moser, J. Am. Chem. Soc., 91, 1135 (1969).
- 27. W. R. Moser, J. Am. Chem. Soc., 91, 1141 (1969).
- 28. H. Nozaki, S. Moriuti, H. Takaya, and R. Noyori, Tetrahedron Lett., **1966**, 5239.
- 29. H. Nozaki, H. Takaya, S. Moriuti, and R. Noyori, Tetrahedron, **24**, 3655 (1968).
- 30. R. K. Armstrong, J. Org. Chem., **31**, 618 (1966).
- 31. M. Takebayashi, T. Ibata, H. Kohara, and B. H. Kim, Bull. Chem. Soc. Jpn., **40**, 2392 (1967).
- M. Takebayashi, T. Ibata, H. Kohara, and K. Ueda, Bull. Chem. Soc. Jpn., 42, 2338 (1969).
- M. Takebayashi, T. Ibata, and K. Ueda, Bull. Chem. Soc. Jpn., 43, 1500 (1970).
- K. Ueda, T. Ibata, and M. Takebayashi, Bull. Chem. Soc. Jpn., 45, 2779 (1972).
- 35. W. Kirmse and H. Dietrich, Chem. Ber., 98, 4027 (1965).
- 36. R. R. Rando, J. Am. Chem. Soc., 92, 6706 (1970).
- 37. R. R. Rando, J. Am. Chem. Soc., 94, 1629 (1972).
- 38. W. Kirmse, H. Dietrich, and H. W. Bücking, Tetrahedron Lett., **1967**, 1833.
- 39. H. Ledon, G. Linstrumelle, and S. Julia, Tetrahedron Lett., 1973, 25.
- 40. G. Stork and M. Gregson, J. Am. Chem. Soc., **91**, 2372 (1969), footnote 6.
- 41. (a) F. Greuter, J. Kalvoda, and O. Jeger, Proc. Chem. Soc. (London), **1958**, 349; (b) T. Nakata and A. Tahara, Tetrahedron Lett., **1976**, 1515.
- 42. S. Masamune, J. Am. Chem. Soc., 86, 735 (1964).
- J. Trotter, C. S. Gibbons, N. Nakatsuka, and S. Masamune, J. Am. Chem. Soc., 89, 2792 (1967).
- 44. W. von E. Doering and M. Pomerantz, Tetrahedron Lett., **1964**, 961.
- 45. F. Medina and A. Manjarrez, Tetrahedron, **20**, 1807 (1964).
- 46. E. Piers, R. W. Britton, and W. de Waal, Can. J. Chem., 47, 831 (1969).
- 47. K. Mori, O. Ohki, A. Kobayashi, and M. Matsui, Tetrahedron, **26**, 2815 (1970).
- 48. E. J. Corey and K. Achiwa, Tetrahedron Lett., **1970**, 2245.
- 49. E. J. Corey and A. M. Felix, J. Am. Chem. Soc., 87, 2518 (1965).
- 50. R. H. Earle, Jr., D. T. Hurst, and M. Viney, J. Chem. Soc., (C), **1969**, 2093.
- 51. G. Lowe and J. Parker, J. Chem. Soc., Chem. Commun., 1971, 577.
- 52. D. M. Brunwin, G. Lowe, and J. Parker, J. Chem. Soc., Chem. Commun.,

**1971**, 865.

- 53. D. M. Brunwin, G. Lowe, and J. Parker, J. Chem. Soc., (C), 1971, 3756.
- 54. D. M. Brunwin and G. Lowe, J. Chem. Soc., Chem. Commun., 1972, 589.
- 55. B. T. Golding and D. R. Hall, J. Chem. Soc., Chem. Commun., 1973, 293.
- 56. M. M. Fawzi and C. D. Gutsche, J. Org. Chem., **31**, 1390 (1966).
- 57. J. P. Lokensgard, J. O'Dea, and E. A. Hill, J. Org. Chem., **39**, 3355 (1974).
- 58. H. E. Zimmerman and R. D. Little, J. Am. Chem. Soc., 96, 4623 (1974).
- 59. A. B. Smith, III, J. Chem. Soc., Chem. Commun., 1974, 695.
- (a) A. B. Smith, B. H. Toder, and S. J. Branca, J. Am. Chem. Soc., 98, 7456 (1976); (b) C. Iwata, M. Yamada, Y. Shinoo, K. Kobayashi, and H. Okada, J. Chem. Soc., Chem. Commun., 1977, 888.
- 61. J. Altman, D. Becker, D. Ginsburg, and H. J. E. Loewenthal, Tetrahedron Lett., **1967**, 757.
- 62. (a) P. L. Andersen, Diss. Abstr., B, 28 (1), 91 (1967); (b) S. J. Branca, R. L. Lock, and A. B. Smith, III, J. Org. Chem., 42, 3165 (1977).
- 63. S. C. Welch and R. L. Walters, Synth. Commun., **3**, 15 (1973).
- 64. S. C. Welch and R. L. Walters, J. Org. Chem., 39, 2665 (1974).
- 65. E. J. Corey and K. Achiwa, Tetrahedron Lett., 1969, 1837.
- 66. K. Mori and M. Matsui, Tetrahedron Lett., 1969, 2729.
- R. M. Coates and R. M. Freidinger, J. Chem. Soc., Chem. Commun., 1969, 871.
- 68. R. M. Coates and R. M. Freidinger, Tetrahedron, 26, 3487 (1970).
- O. P. Vig, O. P. Chugh, R. C. Anand, and M. S. Bhatia, J. Indian Chem. Soc., 47, 506 (1970).
- 70. S. K. Dasgupta and A. S. Sarma, Tetrahedron Lett., **1968**, 2983.
- 71. S. K. Dasgupta, R. Dasgupta, S. R. Ghosh, and U. R. Ghatak, J. Chem. Soc., Chem. Commun., **1969**, 1253.
- P. N. Chakrabortty, R. Dasgupta, S. K. Dasgupta, S. R. Ghosh, and U. R. Ghatak, Tetrahedron, 28, 4653 (1972).
- 73. D. Becker and H. J. E. Loewenthal, Isr. J. Chem., 10, 375 (1972).
- 74. S. K. Dasgupta and A. S. Sarma, Tetrahedron, 29, 309 (1973).
- 75. U. R. Ghatak, P. C. Chakraborti, B. C. Ranu, and B. Sanyal, J. Chem. Soc., Chem. Commun., **1973**, 548.
- 76. D. J. Beames and L. N. Mander, J. Chem. Soc., Chem. Commun., **1969**, 498.
- 77. M. Mongrain, J. Lafontaine, A. Bélanger, and P. Deslongchamps, Can. J. Chem., **48**, 3273 (1970).
- 78. D. J. Beames, J. A. Halleday, and L. N. Mander, Aust. J. Chem., 25, 137

(1972).

- 79. L. N. Mander, R. H. Prager, and J. V. Turner, Aust. J. Chem., **27**, 2645 (1974).
- 80. G. Stork and P. A. Grieco, J. Am. Chem. Soc., 91, 2407 (1969).
- 81. G. Stork and M. Marx, J. Am. Chem. Soc., 91, 2371 (1969).
- 82. G. Stork and P. A. Grieco, Tetrahedron Lett., 1971, 1807.
- (a) G. Stork and M. Gregson, J. Am. Chem. Soc., **91**, 2373 (1969); (b) P. Deslongchamps, J. Lafontaine, L. Ruest, and P. Soucy, Can. J. Chem., **55**, 4117 (1977).
- 84. P. M. McCurry, Jr., Tetrahedron Lett., **1971**, 1845.
- 85. A. Costantino, G. Linstrumelle, and S. Julia, Bull. Soc. Chim. Fr., **1970**, 907.
- A. Costantino, G. Linstrumelle, and S. Julia, Bull. Soc. Chim. Fr., **1970**, 912.
- 87. L. T. Scott, J. Chem. Soc., Chem. Commun., 1973, 882.
- 88. M. N. Nwaji and O. S. Onyiriuka, Tetrahedron Lett., 1974, 2255.
- 89. G. Cannic, G. Linstrumelle, and S. Julia, Bull. Soc. Chim. Fr., 1968, 4913.
- S. Julia, G. Cannic, and G. Linstrumelle, C. R. Acad. Sci. Paris, Ser. C, 264, 1890 (1967).
- 91. H. O. House and C. J. Blankley, J. Org. Chem., 33, 53 (1968).
- 92. H. Ledon, G. Cannic, G. Linstrumelle, and S. Julia, Tetrahedron Lett., **1970**, 3971.
- 93. (a) H. Ledon, G. Linstrumelle, and S. Julia, Tetrahedron, 29, 3609 (1973);
  (b) F. Zutterman, P. De Clercq, and M. Vandewalle, Tetrahedron Lett., 1977, 3191.
- 94. R. M. Coates and W. H. Robinson, J. Am. Chem. Soc., 93, 1785 (1971).
- 95. E. J. Corey and P. L. Fuchs, J. Am. Chem. Soc., 94, 4014 (1972).
- 96. F. E. Ziegler, A. F. Marino, O. A. C. Petroff, and W. L. Studt, Tetrahedron Lett., **1974**, 2035.
- 97. R. D. Clark and C. H. Heathcock, Tetrahedron Lett., 1975, 529.
- 98. B. M. Trost, D. F. Taber, and J. B. Alper, Tetrahedron Lett., 1976, 3857.
- 99. D. F. Taber, J. Am. Chem. Soc., **99**, 3513 (1977).
- 100. K. Kondo, T. Umenoto, Y. Takahatake, and D. Tunemoto, Tetrahedron Lett., **1977**, 113.
- 101. P. Yates and S. Danishefsky, J. Am. Chem. Soc., 84, 879 (1962); J. Bredt and W. Holz, J. Prakt. Chem., 95, 133 (1917).
- 102. P. Yates and R. J. Crawford, J. Am. Chem. Soc., 88, 1562 (1966).
- 103. J. K. Chakrabarti, S. S. Szinai, and A. Todd, J. Chem. Soc., (C), **1970**, 1303.

- 104. H. O. House, S. G. Boots, and V. K. Jones, J. Org. Chem., **30**, 2519 (1965).
- 105. E. Wenkert, B. L. Mylari, and L. L. Davis, J. Am. Chem. Soc., **90**, 3870 (1968).
- 106. J. P. Tresca, J. L. Fourrey, J. Polonsky, and E. Wenkert, Tetrahedron Lett., **1973**, 895.
- 107. S. Wolff and W. C. Agosta, J. Org. Chem., 38, 1694 (1973).
- 108. M. Regitz and J. Rüter, Chem. Ber., 102, 3877 (1969).
- 109. R. C. Cambie and R. A. Franich, J. Chem. Soc., Chem. Commun., **1969**, 725.
- 110. M. Kitadani, K. Ito, and A. Yoshikoshi, Bull. Chem. Soc. Jpn., **44**, 3431 (1971).
- 111. U. R. Ghatak and S. Chakrabarty, J. Am. Chem. Soc., 94, 4756 (1972).
- 112. U. R. Ghatak and S. Chakrabarty, J. Org. Chem., 41, 1089 (1976).
- 113. S. Chakrabarty, J. K. Ray, D. Mukherjee, and U. R. Ghatak, Synth. Commun., **5**, 275 (1975).
- 114. H. Ledon, G. Linstrumelle, and S. Julia, Bull. Soc. Chim. Fr., 1973, 2071.
- 115. J. W. Cook and R. Schoental, J. Chem. Soc., 1945, 288.
- 116. M. S. Newman, G. Eglinton, and H. M. Grotta, J. Am. Chem. Soc., **75**, 349 (1953).
- 117. R. Malherbe, N. T. T. Tam, and H. Dahn, Helv. Chim. Acta, **55**, 245 (1972).
- 118. (a) W. F. Erman and L. C. Stone, J. Am. Chem. Soc., 93, 2821 (1971); (b)
   T. Miyashi, H. Kawamoto, and T. Mukai, Tetrahedron Lett., 1977, 4623.
- 119. D. J. Beames, T. R. Klose, and L. N. Mander, J. Chem. Soc., Chem. Commun., **1971**, 773.
- 120. D. J. Beames and L. N. Mander, Aust. J. Chem., 24, 343 (1971).
- 121. A. B. Smith and R. Karl Dieter, J. Org. Chem., 42, 396 (1977).
- 122. D. J. Beames and L. N. Mander, Aust. J. Chem., 27, 1257 (1974).
- 123. L. N. Mander, J. V. Turner, and B. G. Coombe, Aust. J. Chem., **27**, 1985 (1974).
- 124. T. R. Klose and L. N. Mander, Aust. J. Chem., 27, 1287 (1974).
- 125. D. J. Beames, L. N. Mander, and J. V. Turner, Aust. J. Chem., **27**, 1977 (1974).
- 126. D. J. Beames, T. R. Klose, and L. N. Mander, Aust. J. Chem., **27**, 1269 (1974).
- 127. D. W. Johnson and L. N. Mander, Aust. J. Chem., 27, 1277 (1974).
- 128. U. R. Ghatak and B. Sanyal, J. Chem. Soc., Chem. Commun., **1974**, 876.
- 129. R. Malherbe, Helv. Chim. Acta, 56, 2845 (1973).

- 130. A. B. Smith, III, J. Chem. Soc., Chem. Commun., 1975, 274.
- 131. A. B. Smith, III, S. J. Branca, and B. H. Toder, Tetrahedron Lett., **1975**, 4225.
- 132. (a) U. Schöllkopf, D. Hoppe, N. Rieber, and V. Jacobi, Justus Liebigs Ann. Chem., **730**, 1 (1969); (b) R. Malherbe and H. Dahn, Helv. Chim. Acta, **60**, 2539 (1977).
- 133. S. Bien and D. Ovadia, J. Org. Chem., 35, 1028 (1970).
- 134. S. Bien and D. Ovadia, J. Chem. Soc., Perkin Trans. I, 1974, 333.
- 135. L. D. Cama, R. A. Firestone, and B. G. Christensen, Abstracts of the 10th Middle Atlantic Regional Meeting of the American Chemical Society, Philadelphia, Pa., Feb. 23–26, 1976, Abstract J-16.
- 136. I. Ernest, Tetrahedron, **33**, 547 (1977).
- 137. E. R. Marshall, J. A. Kuck, and R. C. Elderfield, J. Org. Chem., **7**, 444 (1942).
- 138. P. Pfeiffer, and E. Endres, Chem. Ber. 84, 247 (1951).
- 139. A. J. Bose and P. Yates, J. Am. Chem. Soc., 74, 4703 (1952).
- 140. W. von E. Doering, E. T. Fossel, and R. L. Kaye, Tetrahedron, **21**, 25 (1965).
- 141. H. Musso and U. Biethan, Chem. Ber., 100, 119 (1967).
- 142. R. M. Coates and J. L. Kirkpatrick, J. Am. Chem. Soc., 92, 4883 (1970).
- 143. A. S. Monahan, J. Org. Chem., 33, 1441 (1968).
- 144. A. B. Smith, III, and S. J. Branca, University of Pennsylvania, unpublished observations.

## References to Tables I–V

- 145. K. Kondo, E. Hiro, and D. Tunemoto, Tetrahedron Lett., 1976, 4489.
- 146. (a) S. Bien, A. Gillon, and S. Kohen, J. Chem. Soc., Perkin Trans. I, 1976, 489; (b) R. D. Miller and D. L. Dolce, Tetrahedron Lett., 1977, 3329.
- 147. J. F. Ruppert and J. D. White, J. Chem. Soc., Chem. Commun., **1976**, 976.
- 148. W. H. Robinson, Ph.D. Dissertation, University of Illinois, 1972 [Diss. Abstr. Int., B, 34, 1045 (1973)].
- 149. E. Vedejs, W. R. Wilber, and R. Twieg, J. Org. Chem., 42, 401 (1977).
- 150. D. Tunemoto, N. Araki, and K. Kondo, Tetrahedron Lett., 1977, 109.
- 151. (a) I. Kuwajima, Y. Higuchi, H. Iwasawa, and T. Sato, Chem. Lett. (Jpn.), 1976, 1271; (b) M. Rull, F. Serratosa, and J. Vilarrasa, Tetrahedron Lett., 1977, 4549.
- 152. U. R. Ghatak, S. K. Alam, P. C. Chakraborti, and B. C. Ranu, J. Chem. Soc., Perkin Trans. I, **1976**, 1669.

- 153. J. F. Ruppert, M. A. Avery, and J. D. White, J. Chem. Soc., Chem. Commun., **1976**, 978.
- 154. A. Sarkar, S. Chatterjee, and P. C. Dutta, Tetrahedron Lett., 1976, 4633.
- 155. U. R. Ghatak and J. K. Ray, J. Chem. Soc., Perkin Trans. I, 1977, 518.
- 156. F. T. Bond, W. Weyler, B. Brunner, and J. E. Stemke, J. Med. Chem., **19**, 255 (1976).
- 157. A. Monahan and D. Lewis, J. Chem. Soc., Perkin Trans. I, 1977, 60.
- 158. G. A. Russell, P. R. Whittle, and J. McDonnell, J. Am. Chem. Soc., **89**, 5515 (1967).
- 159. G. A. Russell, J. J. McDonnell, P. R. Whittle, R. S. Givens, and R. C. Keske, J. Am. Chem. Soc., 93, 1452 (1971).
- 160. M. Marx, Diss. Abstr., 27, 4266-B (1967).
- 161. P. K. Freemann and D. G. Kuper, Chem. Ind. (London), 1965, 424.
- 162. J. Meinwald and G. H. Wahl, Jr., Chem. Ind. (London), 1965, 425.
- 163. V. Ioan, M. Popovici, E. Mosanu, M. Eliean, and C. D. Nenitzescu, Rev. Roum. Chim., **10**, 185 (1965) [C.A., **63**, 4181f (1965)].
- 164. S. A. Monti, D. J. Bucheck, and J. C. Shepard, J. Org. Chem., **34**, 3080 (1969).
- 165. G. A. Russell, J. J. McDonnell, and P. R. Whittle, J. Am. Chem. Soc., **89**, 5516 (1967).
- 166. W. G. Dauben and W. M. Welch, Tetrahedron Lett., 1971, 4531.
- 167. S. Julia, M. Julia, and G. Linstrumelle, Bull. Soc. Chim. Fr., 1964 2693.
- 168. S. Julia and G. Linstrumelle, Bull. Soc. Chim. Fr., 1966, 3490.
- 169. R. M. Coates and J. L. Kirkpatrick, J. Am. Chem. Soc., **90**, 4162 (1968).
- 170. A. Nickon, H. Kwasnik, T. Swartz, R. O. Williams, and J. B. DiGiorgio, J. Am. Chem. Soc., **87**, 1615 (1965).
- 171. U. Biethan, U. v. Gizycki, and H. Musso, Tetrahedron Lett., 1965, 1477.
- 172. D. Becker and H. J. E. Loewenthal, J. Chem. Soc., Chem. Commun., **1965**, 149.
- 173. C. J. V. Scanio and D. L. Lickei, Tetrahedron Lett., **1972**, 1363.
- 174. H. Klusacek and H. Musso, Chem. Ber., 103, 3066 (1970).
- 175. J. A. Berson, D. S. Donald, and W. J. Libbey, J. Am. Chem. Soc., **91**, 5580 (1969).
- 176. K. Mori and M. Matsui, Tetrahedron, 25, 5013 (1969).
- 177. K. Mori, M. Ohki, and M. Matsui, Tetrahedron, 26, 2821 (1970).
- 178. S. Julia, A. Costantino, and G. Linstrumelle, C. R. Acad. Sci. Paris, Ser. C, 264, 407 (1967).
- 179. G. W. Klumpp, G. Ellen, J. Japenga, and G. M. de Hoog, Tetrahedron Lett., **1972**, 1741.

- 180. J. E. Baldwin and W. D. Fogelsong, J. Am. Chem. Soc., **90**, 4303 (1968).
- 181. J. E. Baldwin and W. D. Fogelsong, Tetrahedron Lett., 1966, 4089.
- 182. M. Tichý and J. Sicher, Coll. Czech. Chem. Commun. **1972**, 3106 [C.A., **78**, 3779g (1973)].
- 183. B. Boyer, P. Dubreuil, G. Lamaty, and J. P. Roque, Tetrahedron Lett., **1974**, 2919.
- 184. S. Julia, M. Julia, and G. Linstrumelle, Bull. Soc. Chim. Fr., 1966, 3499.
- 185. E. Vedejs and R. A. Shepherd, J. Org. Chem., 41, 742 (1976).
- 186. D. P. G. Hamon, G. F. Taylor, and R. N. Young, Tetrahedron Lett., **1975**, 1623.
- 187. A. Krantz and C. Y. Lin, J. Am. Chem. Soc., **95**, 5662 (1973).
- 188. R. K. Murray, K. A. Babiak, and T. K. Morgan, Jr., J. Org. Chem., **40**, 2463 (1975).
- 189. D. P. G. Hamon and G. F. Taylor, Aust. J. Chem., 28, 2255 (1975).
- 190. H. E. Zimmerman, R. G. Lewis, J. J. McCullough, A. Padwa, S. W. Staley, and M. Semmelhack, J. Am. Chem. Soc., **88**, 1965 (1966).
- 191. Y. Bessière-Chrètien and M. M. El Gaied, Bull, Soc. Chim. Fr., **1971**, 2189.
- 192. S. Bien and D. Ovadia, J. Org. Chem., **39**, 2258 (1974).
- 193. G. Linstrumelle and S. Julia, Bull. Soc. Chim. Fr., 1966, 3507.
- 194. E. Vedejs, R. A. Shepherd, and R. P. Steiner, J. Am. Chem. Soc., **92**, 2158 (1970).
- 195. H. E. Zimmerman and L. M. Tolbert, J. Am. Chem. Soc., **97**, 5497 (1975).
- 196. E. Vedejs and W. R. Wilber, Tetrahedron Lett., **1975**, 2679.
- 197. E. Piers, W. de Waal, and R. W. Britton, Can. J. Chem., 47, 4299 (1969).
- 198. E. Piers, W. de Waal, and R. W. Britton, J. Chem. Soc., Chem. Commun., **1968**, 188.
- 199. E. Piers, R. W. Britton, and W. de Waal, Can. J. Chem., 49, 12 (1971).
- 200. A. Tanaka, H. Uda, and A. Yoshikoshi, J. Chem. Soc., Chem. Commun., 1969, 308.
- 201. E. Piers, R. W. Britton, and W. de Waal, Tetrahedron Lett., **1969**, 1251.
- 202. O. P. Vig, M. S. Bhatia, A. K. Verma, and K. L. Matta, J. Indian Chem. Soc., 47, 277 (1970).
- 203. E. Piers, M. B. Geraghty, R. D. Smillie, and M. Soucy, Can. J. Chem., **53**, 2849 (1975).
- 204. M. Popovici, V. Ioan, M. Elian, and C. D. Nenitzescu, Rev. Roum. Chim., 12, 583 (1967) [C.A., 68, 29448s (1968)].
- 205. O. P. Vig, M. S. Bhatia, I. R. Trehan, and K. L. Matta, J. Indian Chem. Soc., **47**, 282 (1970).

- V. Ioan, M. Popovici, and C. D. Nenitzescu, Tetrahedron Lett., **1965**, 3383.
- 207. S. Masamune and N. T. Castellucci, Proc. Chem. Soc. (London), **1964**, 298.
- 208. M. Baciu, M. Elian, E. Cioranescu, and C. D. Nenitzescu, Tetrahedron Lett., **1972**, 2573.
- 209. J. L. Mateos and V. M. Coronado, Rev. Latinoamer. Quim., 6, 72 (1975) [C.A., 83, 147641g (1976)].
- 210. A. Small, J. Am. Chem. Soc., 86, 2091 (1964).
- 211. L. Solomon, Diss. Abstr., 26, 101 (1965).
- 212. N. Nakamura and K. Sakai, Tetrahedron Lett., **1976**, 2049.
- 213. T. M. Brennan and R. Hill, J. Am. Chem. Soc., 90, 5614 (1968).
- 214. (a) S. Danishefsky, R. McKee, and R. K. Singh, J. Am. Chem. Soc., 99, 4783 (1977); (b) S. Danishefsky and R. Doehner, Tetrahedron Lett., 1977, 3031.
- 215. J. A. Kaufman and S. J. Weininger, J. Chem. Soc., Chem. Commun., 1969, 593.
- 216. W. C. Agosta and S. Wolf, J. Org. Chem., 40, 1027 (1975).
- 217. (a) S. A. Godleski, P. v. R. Schleyer, and E. Osawa, J. Chem. Soc., Chem. Commun., **1976**, 38; (b) Y. Inamoto, K. Aigami, N. Takaishi, Y. Fujikura, K. Tsuchihashi, and H. Ikeda, J. Org. Chem., **42**, 3833 (1977).
- 218. R. T. Landsbury and J. G. Colson, Chem. Ind. (London), **1962**, 821.
- 219. U. R. Ghatak and S. Chakrabarty, J. Org. Chem., 41, 1089 (1976).
- 220. U. R. Ghatak, J. K. Ray, and S. Chakrabarty, J. Chem. Soc., Perkin Trans. I, **1976**, 1975.
- 221. J. R. Marshall and J. Walker, J. Chem. Soc., 1952, 467.
- 222. A. K. Bose and P. Yates, J. Am. Chem. Soc., 74, 4703 (1952).
- 223. P. Pfeiffer and E. Enders, Chem. Ber., 84, 247 (1951).
- 224. H. E. Sheffer and J. A. Moore, J. Org. Chem., 28, 129 (1963).
- 225. A. Seetharamiah, J. Chem. Soc., **1948**, 894.
- 226. H. Krzikalla and B. Eistert, J. Prakt. Chem., **143**, 50 (1935).
- 227. J. A. Moore and R. W. Medeiros, J. Am. Chem. Soc., 81, 6026 (1959).
- 228. F. W. Bruchhausen and H. Hoffmann, Chem. Ber., 74, 1584 (1941).
- 229. R. Hirschmann, Chem. Ind. (London), 1958, 1259.
- 230. J. A. Moore, W. F. Holton, and E. L. Wittle, J. Am. Chem. Soc., **84**, 390 (1962).